In [1]:
import pandas as pd
import numpy as np
import pickle
import time
import operator
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.metrics import log_loss, f1_score, accuracy_score
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
In [2]:
# 신규 데이터 로딩
trn = pd.read_csv('../input/train_append_lb_lag.csv').fillna(0)
target = pd.DataFrame(pickle.load(open('../input/target.pkl','rb')), columns=['target'])
temp = pd.read_csv('../input/test_clean.csv')
test_id = temp['ncodpers']
tst = pd.read_csv('../input/test_append_lb_lag.csv').fillna(0)
print(trn.shape, target.shape, tst.shape)
(45619, 246) (45619, 1) (929615, 246)
In [3]:
trn.head()
Out[3]:
age
antiguedad
canal_entrada
cod_prov
conyuemp
fecha_alta
ind_actividad_cliente
ind_empleado
ind_nuevo
indext
...
indrel_lag_fiv
indrel_1mes_lag_fiv
indresi_lag_fiv
nomprov_lag_fiv
pais_residencia_lag_fiv
renta_lag_fiv
segmento_lag_fiv
sexo_lag_fiv
tiprel_1mes_lag_fiv
ult_fec_cli_1t_lag_fiv
0
28
34
150
20
2
1012
1
3
0
0
...
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1
28
34
150
20
2
1012
1
3
0
0
...
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2
37
34
122
20
2
1012
1
3
0
0
...
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-153.0
3
37
34
122
20
2
1012
1
3
0
0
...
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-153.0
4
40
34
122
20
2
1012
1
3
0
0
...
0.0
0.0
1.0
30.0
36.0
93847.0
1.0
0.0
0.0
-153.0
5 rows × 246 columns
In [4]:
trn.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 45619 entries, 0 to 45618
Columns: 246 entries, age to ult_fec_cli_1t_lag_fiv
dtypes: float64(225), int64(21)
memory usage: 85.6 MB
In [5]:
# 신규 데이터 설명
for col in trn.columns:
print(col)
age
antiguedad
canal_entrada
cod_prov
conyuemp
fecha_alta
ind_actividad_cliente
ind_empleado
ind_nuevo
indext
indfall
indrel
indrel_1mes
indresi
nomprov
pais_residencia
renta
segmento
sexo
tiprel_1mes
ult_fec_cli_1t
age_lag_one
antiguedad_lag_one
canal_entrada_lag_one
cod_prov_lag_one
conyuemp_lag_one
fecha_alta_lag_one
ind_actividad_cliente_lag_one
ind_ahor_fin_ult1_lag_one
ind_aval_fin_ult1_lag_one
ind_cco_fin_ult1_lag_one
ind_cder_fin_ult1_lag_one
ind_cno_fin_ult1_lag_one
ind_ctju_fin_ult1_lag_one
ind_ctma_fin_ult1_lag_one
ind_ctop_fin_ult1_lag_one
ind_ctpp_fin_ult1_lag_one
ind_deco_fin_ult1_lag_one
ind_dela_fin_ult1_lag_one
ind_deme_fin_ult1_lag_one
ind_ecue_fin_ult1_lag_one
ind_empleado_lag_one
ind_fond_fin_ult1_lag_one
ind_hip_fin_ult1_lag_one
ind_nom_pens_ult1_lag_one
ind_nomina_ult1_lag_one
ind_nuevo_lag_one
ind_plan_fin_ult1_lag_one
ind_pres_fin_ult1_lag_one
ind_reca_fin_ult1_lag_one
ind_recibo_ult1_lag_one
ind_tjcr_fin_ult1_lag_one
ind_valo_fin_ult1_lag_one
ind_viv_fin_ult1_lag_one
indext_lag_one
indfall_lag_one
indrel_lag_one
indrel_1mes_lag_one
indresi_lag_one
nomprov_lag_one
pais_residencia_lag_one
renta_lag_one
segmento_lag_one
sexo_lag_one
tiprel_1mes_lag_one
ult_fec_cli_1t_lag_one
age_lag_two
antiguedad_lag_two
canal_entrada_lag_two
cod_prov_lag_two
conyuemp_lag_two
fecha_alta_lag_two
ind_actividad_cliente_lag_two
ind_ahor_fin_ult1_lag_two
ind_aval_fin_ult1_lag_two
ind_cco_fin_ult1_lag_two
ind_cder_fin_ult1_lag_two
ind_cno_fin_ult1_lag_two
ind_ctju_fin_ult1_lag_two
ind_ctma_fin_ult1_lag_two
ind_ctop_fin_ult1_lag_two
ind_ctpp_fin_ult1_lag_two
ind_deco_fin_ult1_lag_two
ind_dela_fin_ult1_lag_two
ind_deme_fin_ult1_lag_two
ind_ecue_fin_ult1_lag_two
ind_empleado_lag_two
ind_fond_fin_ult1_lag_two
ind_hip_fin_ult1_lag_two
ind_nom_pens_ult1_lag_two
ind_nomina_ult1_lag_two
ind_nuevo_lag_two
ind_plan_fin_ult1_lag_two
ind_pres_fin_ult1_lag_two
ind_reca_fin_ult1_lag_two
ind_recibo_ult1_lag_two
ind_tjcr_fin_ult1_lag_two
ind_valo_fin_ult1_lag_two
ind_viv_fin_ult1_lag_two
indext_lag_two
indfall_lag_two
indrel_lag_two
indrel_1mes_lag_two
indresi_lag_two
nomprov_lag_two
pais_residencia_lag_two
renta_lag_two
segmento_lag_two
sexo_lag_two
tiprel_1mes_lag_two
ult_fec_cli_1t_lag_two
age_lag_thr
antiguedad_lag_thr
canal_entrada_lag_thr
cod_prov_lag_thr
conyuemp_lag_thr
fecha_alta_lag_thr
ind_actividad_cliente_lag_thr
ind_ahor_fin_ult1_lag_thr
ind_aval_fin_ult1_lag_thr
ind_cco_fin_ult1_lag_thr
ind_cder_fin_ult1_lag_thr
ind_cno_fin_ult1_lag_thr
ind_ctju_fin_ult1_lag_thr
ind_ctma_fin_ult1_lag_thr
ind_ctop_fin_ult1_lag_thr
ind_ctpp_fin_ult1_lag_thr
ind_deco_fin_ult1_lag_thr
ind_dela_fin_ult1_lag_thr
ind_deme_fin_ult1_lag_thr
ind_ecue_fin_ult1_lag_thr
ind_empleado_lag_thr
ind_fond_fin_ult1_lag_thr
ind_hip_fin_ult1_lag_thr
ind_nom_pens_ult1_lag_thr
ind_nomina_ult1_lag_thr
ind_nuevo_lag_thr
ind_plan_fin_ult1_lag_thr
ind_pres_fin_ult1_lag_thr
ind_reca_fin_ult1_lag_thr
ind_recibo_ult1_lag_thr
ind_tjcr_fin_ult1_lag_thr
ind_valo_fin_ult1_lag_thr
ind_viv_fin_ult1_lag_thr
indext_lag_thr
indfall_lag_thr
indrel_lag_thr
indrel_1mes_lag_thr
indresi_lag_thr
nomprov_lag_thr
pais_residencia_lag_thr
renta_lag_thr
segmento_lag_thr
sexo_lag_thr
tiprel_1mes_lag_thr
ult_fec_cli_1t_lag_thr
age_lag_fou
antiguedad_lag_fou
canal_entrada_lag_fou
cod_prov_lag_fou
conyuemp_lag_fou
fecha_alta_lag_fou
ind_actividad_cliente_lag_fou
ind_ahor_fin_ult1_lag_fou
ind_aval_fin_ult1_lag_fou
ind_cco_fin_ult1_lag_fou
ind_cder_fin_ult1_lag_fou
ind_cno_fin_ult1_lag_fou
ind_ctju_fin_ult1_lag_fou
ind_ctma_fin_ult1_lag_fou
ind_ctop_fin_ult1_lag_fou
ind_ctpp_fin_ult1_lag_fou
ind_deco_fin_ult1_lag_fou
ind_dela_fin_ult1_lag_fou
ind_deme_fin_ult1_lag_fou
ind_ecue_fin_ult1_lag_fou
ind_empleado_lag_fou
ind_fond_fin_ult1_lag_fou
ind_hip_fin_ult1_lag_fou
ind_nom_pens_ult1_lag_fou
ind_nomina_ult1_lag_fou
ind_nuevo_lag_fou
ind_plan_fin_ult1_lag_fou
ind_pres_fin_ult1_lag_fou
ind_reca_fin_ult1_lag_fou
ind_recibo_ult1_lag_fou
ind_tjcr_fin_ult1_lag_fou
ind_valo_fin_ult1_lag_fou
ind_viv_fin_ult1_lag_fou
indext_lag_fou
indfall_lag_fou
indrel_lag_fou
indrel_1mes_lag_fou
indresi_lag_fou
nomprov_lag_fou
pais_residencia_lag_fou
renta_lag_fou
segmento_lag_fou
sexo_lag_fou
tiprel_1mes_lag_fou
ult_fec_cli_1t_lag_fou
age_lag_fiv
antiguedad_lag_fiv
canal_entrada_lag_fiv
cod_prov_lag_fiv
conyuemp_lag_fiv
fecha_alta_lag_fiv
ind_actividad_cliente_lag_fiv
ind_ahor_fin_ult1_lag_fiv
ind_aval_fin_ult1_lag_fiv
ind_cco_fin_ult1_lag_fiv
ind_cder_fin_ult1_lag_fiv
ind_cno_fin_ult1_lag_fiv
ind_ctju_fin_ult1_lag_fiv
ind_ctma_fin_ult1_lag_fiv
ind_ctop_fin_ult1_lag_fiv
ind_ctpp_fin_ult1_lag_fiv
ind_deco_fin_ult1_lag_fiv
ind_dela_fin_ult1_lag_fiv
ind_deme_fin_ult1_lag_fiv
ind_ecue_fin_ult1_lag_fiv
ind_empleado_lag_fiv
ind_fond_fin_ult1_lag_fiv
ind_hip_fin_ult1_lag_fiv
ind_nom_pens_ult1_lag_fiv
ind_nomina_ult1_lag_fiv
ind_nuevo_lag_fiv
ind_plan_fin_ult1_lag_fiv
ind_pres_fin_ult1_lag_fiv
ind_reca_fin_ult1_lag_fiv
ind_recibo_ult1_lag_fiv
ind_tjcr_fin_ult1_lag_fiv
ind_valo_fin_ult1_lag_fiv
ind_viv_fin_ult1_lag_fiv
indext_lag_fiv
indfall_lag_fiv
indrel_lag_fiv
indrel_1mes_lag_fiv
indresi_lag_fiv
nomprov_lag_fiv
pais_residencia_lag_fiv
renta_lag_fiv
segmento_lag_fiv
sexo_lag_fiv
tiprel_1mes_lag_fiv
ult_fec_cli_1t_lag_fiv
In [6]:
# 훈련 데이터와 테스트 데이터 동일 여부 확인
trn.columns == tst.columns
Out[6]:
array([ True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True, True, True, True, True, True, True,
True, True, True], dtype=bool)
In [7]:
# 빈도가 낮은 타겟은 사전에 제거 (이유: 교차 검증에 활용할 수 없음 + 너무 빈도가 낮아 무의미함)
rem_targets = [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 21, 22, 23] # 18 classes
trn = trn[target['target'].isin(rem_targets)]
target = target[target['target'].isin(rem_targets)]
target = LabelEncoder().fit_transform(target)
for t in np.unique(target):
print(t, sum(target==t))
C:\Users\Byeon\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:129: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
0 9452
1 1934
2 55
3 349
4 222
5 154
6 503
7 33
8 1085
9 1219
10 246
11 21
12 2942
13 4733
14 159
15 5151
16 8218
17 9119
In [8]:
def evaluate(x, y, model):
trn_scores = dict(); vld_scores = dict()
sss = StratifiedShuffleSplit(n_splits=3, test_size=0.1, random_state=777)
for t_ind, v_ind in sss.split(x,y):
# split data
x_trn, x_vld = x.iloc[t_ind], x.iloc[v_ind]
y_trn, y_vld = y[t_ind], y[v_ind]
# fit model
model.fit(x_trn, y_trn)
# eval _ trn
preds = model.predict_proba(x_trn)
log_scores = trn_scores.get('log loss', [])
log_scores.append(log_loss(y_trn, preds))
trn_scores['log loss'] = log_scores
# eval _ vld
preds = model.predict_proba(x_vld)
log_scores = vld_scores.get('log loss', [])
log_scores.append(log_loss(y_vld, preds))
vld_scores['log loss'] = log_scores
return trn_scores, vld_scores
def print_scores(trn_scores, vld_scores):
prefix = ' '
cols = ['log loss']
print('='*50)
print('TRAIN EVAL')
for col in cols:
print('-'*50)
print('# {}'.format(col))
print('# {} Mean : {}'.format(prefix, np.mean(trn_scores[col])))
print('# {} Raw : {}'.format(prefix, trn_scores[col]))
print('='*50)
print('VALID EVAL')
for col in cols:
print('-'*50)
print('# {}'.format(col))
print('# {} Mean : {}'.format(prefix, np.mean(vld_scores[col])))
print('# {} Raw : {}'.format(prefix, vld_scores[col]))
def print_time(end, start):
print('='*50)
elapsed = end - start
print('{} secs'.format(round(elapsed)))
def fit_and_eval(trn, target, model):
trn_scores, vld_scores = evaluate(trn,target,model)
print_scores(trn_scores, vld_scores)
print_time(time.time(), st)
In [9]:
st = time.time()
from sklearn.tree import DecisionTreeClassifier
dt_model = DecisionTreeClassifier(max_depth=5,random_state=777)
fit_and_eval(trn.fillna(0), target, dt_model)
# 9 sec
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.3109224350534252
# Raw : [1.3115981739687124, 1.3107068679354577, 1.310462263256106]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.3779936666060042
# Raw : [1.3575320170809917, 1.3871952618582359, 1.3892537208787852]
==================================================
4 secs
In [10]:
st = time.time()
from sklearn.ensemble import RandomForestClassifier
rf_model = RandomForestClassifier(max_depth=10, n_jobs=-1, random_state=777)
fit_and_eval(trn, target, rf_model)
# 5 sec
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.201159088622055
# Raw : [1.1926486558865388, 1.2100953404685806, 1.2007332695110449]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.3143710007821832
# Raw : [1.2947880460294008, 1.3242720506188492, 1.3240529056982995]
==================================================
3 secs
In [11]:
st = time.time()
from sklearn.ensemble import RandomForestClassifier
rf_model = RandomForestClassifier(max_depth=20, n_jobs=-1, random_state=777)
fit_and_eval(trn, target, rf_model)
# 5 sec
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 0.6666717538543528
# Raw : [0.66829393750261501, 0.66145394035539729, 0.67026738370504657]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 2.166382771489643
# Raw : [2.1254981115532927, 2.1710336052809236, 2.2026165976347123]
==================================================
5 secs
In [12]:
st = time.time()
from sklearn.ensemble import ExtraTreesClassifier
et_model = ExtraTreesClassifier(max_depth=10, n_jobs=-1, random_state=777)
fit_and_eval(trn, target, et_model)
# 6 sec
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.1864977396096574
# Raw : [1.1971863785361296, 1.1778108146519104, 1.1844960256409323]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2861678250955952
# Raw : [1.2981150084925899, 1.2791127823209658, 1.28127568447323]
==================================================
3 secs
In [13]:
st = time.time()
from sklearn.ensemble import BaggingClassifier
bg_model = BaggingClassifier(n_estimators=5, n_jobs=-1, random_state=777)
fit_and_eval(trn, target, bg_model)
# 75 sec
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 0.48384125830774316
# Raw : [0.48381222376256705, 0.48285650980844452, 0.48485504135221785]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 9.577640107983079
# Raw : [9.6512237278370669, 9.3366553224998405, 9.745041273612328]
==================================================
38 secs
In [14]:
st = time.time()
from sklearn.ensemble import BaggingClassifier
bg_model = BaggingClassifier(n_estimators=10, n_jobs=-1, random_state=777)
fit_and_eval(trn, target, bg_model)
# 75 sec
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 0.39795397341465205
# Raw : [0.39815431830011555, 0.3979483382233987, 0.39775926372044201]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 7.016678028708846
# Raw : [7.1605635920216182, 6.8222240819288231, 7.0672464121760976]
==================================================
49 secs
In [15]:
# Utility
def observe_model_tree(trn, model):
print('='*50)
print(model)
print('='*50)
print('# Feature Importance')
print(model.feature_importances_)
print('-'*50)
print('# Mapped to Column Name')
prefix = ' '
feature_importance = dict()
for i, f_imp in enumerate(model.feature_importances_):
print('{} {} \t {}'.format(prefix, round(f_imp,5), trn.columns[i]))
feature_importance[trn.columns[i]] = f_imp
print('-'*50)
print('# Sorted Feature Importance')
feature_importance_sorted = sorted(feature_importance.items(), key=operator.itemgetter(1), reverse=True)
for item in feature_importance_sorted:
print('{} {} \t {}'.format(prefix, round(item[1],5), item[0]))
return feature_importance_sorted
def plot_fimp(fimp):
x = []; y = []
for item in fimp:
x.append(item[0])
y.append(item[1])
f, ax = plt.subplots(figsize=(20, 15))
sns.barplot(x,y,alpha=0.5)
ax.set_title('Feature Importance for Model : Decision Tree')
ax.set(xlabel='Column Name', ylabel='Feature Importance')
In [16]:
# 모델 상세 보기
dt_fimp = observe_model_tree(trn, dt_model)
==================================================
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=5,
max_features=None, max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
presort=False, random_state=777, splitter='best')
==================================================
# Feature Importance
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 7.12470739e-03 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 1.82035690e-01 0.00000000e+00
1.04508987e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
1.52613436e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 1.38309707e-01 1.99355530e-02
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 1.39887391e-03 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 2.86428234e-01 6.23968253e-02 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 4.21462327e-02
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
1.21178325e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 1.88036323e-02 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
1.66885761e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
1.36620898e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 2.36816617e-04 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
3.56508942e-02 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00]
--------------------------------------------------
# Mapped to Column Name
0.0 age
0.0 antiguedad
0.0 canal_entrada
0.0 cod_prov
0.0 conyuemp
0.00712 fecha_alta
0.0 ind_actividad_cliente
0.0 ind_empleado
0.0 ind_nuevo
0.0 indext
0.0 indfall
0.0 indrel
0.0 indrel_1mes
0.0 indresi
0.0 nomprov
0.0 pais_residencia
0.0 renta
0.0 segmento
0.0 sexo
0.0 tiprel_1mes
0.0 ult_fec_cli_1t
0.0 age_lag_one
0.0 antiguedad_lag_one
0.0 canal_entrada_lag_one
0.0 cod_prov_lag_one
0.0 conyuemp_lag_one
0.0 fecha_alta_lag_one
0.0 ind_actividad_cliente_lag_one
0.0 ind_ahor_fin_ult1_lag_one
0.0 ind_aval_fin_ult1_lag_one
0.18204 ind_cco_fin_ult1_lag_one
0.0 ind_cder_fin_ult1_lag_one
0.01045 ind_cno_fin_ult1_lag_one
0.0 ind_ctju_fin_ult1_lag_one
0.0 ind_ctma_fin_ult1_lag_one
0.0 ind_ctop_fin_ult1_lag_one
0.0 ind_ctpp_fin_ult1_lag_one
0.0 ind_deco_fin_ult1_lag_one
0.0 ind_dela_fin_ult1_lag_one
0.0 ind_deme_fin_ult1_lag_one
0.0 ind_ecue_fin_ult1_lag_one
0.0 ind_empleado_lag_one
0.0 ind_fond_fin_ult1_lag_one
0.0 ind_hip_fin_ult1_lag_one
0.15261 ind_nom_pens_ult1_lag_one
0.0 ind_nomina_ult1_lag_one
0.0 ind_nuevo_lag_one
0.0 ind_plan_fin_ult1_lag_one
0.0 ind_pres_fin_ult1_lag_one
0.0 ind_reca_fin_ult1_lag_one
0.13831 ind_recibo_ult1_lag_one
0.01994 ind_tjcr_fin_ult1_lag_one
0.0 ind_valo_fin_ult1_lag_one
0.0 ind_viv_fin_ult1_lag_one
0.0 indext_lag_one
0.0 indfall_lag_one
0.0 indrel_lag_one
0.0 indrel_1mes_lag_one
0.0 indresi_lag_one
0.0 nomprov_lag_one
0.0 pais_residencia_lag_one
0.0 renta_lag_one
0.0 segmento_lag_one
0.0 sexo_lag_one
0.0 tiprel_1mes_lag_one
0.0 ult_fec_cli_1t_lag_one
0.0 age_lag_two
0.0 antiguedad_lag_two
0.0 canal_entrada_lag_two
0.0 cod_prov_lag_two
0.0 conyuemp_lag_two
0.0 fecha_alta_lag_two
0.0 ind_actividad_cliente_lag_two
0.0 ind_ahor_fin_ult1_lag_two
0.0 ind_aval_fin_ult1_lag_two
0.0 ind_cco_fin_ult1_lag_two
0.0 ind_cder_fin_ult1_lag_two
0.0014 ind_cno_fin_ult1_lag_two
0.0 ind_ctju_fin_ult1_lag_two
0.0 ind_ctma_fin_ult1_lag_two
0.0 ind_ctop_fin_ult1_lag_two
0.0 ind_ctpp_fin_ult1_lag_two
0.0 ind_deco_fin_ult1_lag_two
0.0 ind_dela_fin_ult1_lag_two
0.0 ind_deme_fin_ult1_lag_two
0.0 ind_ecue_fin_ult1_lag_two
0.0 ind_empleado_lag_two
0.0 ind_fond_fin_ult1_lag_two
0.0 ind_hip_fin_ult1_lag_two
0.28643 ind_nom_pens_ult1_lag_two
0.0624 ind_nomina_ult1_lag_two
0.0 ind_nuevo_lag_two
0.0 ind_plan_fin_ult1_lag_two
0.0 ind_pres_fin_ult1_lag_two
0.0 ind_reca_fin_ult1_lag_two
0.04215 ind_recibo_ult1_lag_two
0.0 ind_tjcr_fin_ult1_lag_two
0.0 ind_valo_fin_ult1_lag_two
0.0 ind_viv_fin_ult1_lag_two
0.0 indext_lag_two
0.0 indfall_lag_two
0.0 indrel_lag_two
0.0 indrel_1mes_lag_two
0.0 indresi_lag_two
0.0 nomprov_lag_two
0.0 pais_residencia_lag_two
0.0 renta_lag_two
0.0 segmento_lag_two
0.0 sexo_lag_two
0.0 tiprel_1mes_lag_two
0.0 ult_fec_cli_1t_lag_two
0.0 age_lag_thr
0.0 antiguedad_lag_thr
0.0 canal_entrada_lag_thr
0.0 cod_prov_lag_thr
0.0 conyuemp_lag_thr
0.0 fecha_alta_lag_thr
0.0 ind_actividad_cliente_lag_thr
0.0 ind_ahor_fin_ult1_lag_thr
0.0 ind_aval_fin_ult1_lag_thr
0.0 ind_cco_fin_ult1_lag_thr
0.0 ind_cder_fin_ult1_lag_thr
0.0 ind_cno_fin_ult1_lag_thr
0.0 ind_ctju_fin_ult1_lag_thr
0.01212 ind_ctma_fin_ult1_lag_thr
0.0 ind_ctop_fin_ult1_lag_thr
0.0 ind_ctpp_fin_ult1_lag_thr
0.0 ind_deco_fin_ult1_lag_thr
0.0 ind_dela_fin_ult1_lag_thr
0.0 ind_deme_fin_ult1_lag_thr
0.0 ind_ecue_fin_ult1_lag_thr
0.0 ind_empleado_lag_thr
0.0 ind_fond_fin_ult1_lag_thr
0.0 ind_hip_fin_ult1_lag_thr
0.0188 ind_nom_pens_ult1_lag_thr
0.0 ind_nomina_ult1_lag_thr
0.0 ind_nuevo_lag_thr
0.0 ind_plan_fin_ult1_lag_thr
0.0 ind_pres_fin_ult1_lag_thr
0.0 ind_reca_fin_ult1_lag_thr
0.01669 ind_recibo_ult1_lag_thr
0.0 ind_tjcr_fin_ult1_lag_thr
0.0 ind_valo_fin_ult1_lag_thr
0.0 ind_viv_fin_ult1_lag_thr
0.0 indext_lag_thr
0.0 indfall_lag_thr
0.0 indrel_lag_thr
0.0 indrel_1mes_lag_thr
0.0 indresi_lag_thr
0.0 nomprov_lag_thr
0.0 pais_residencia_lag_thr
0.0 renta_lag_thr
0.0 segmento_lag_thr
0.0 sexo_lag_thr
0.0 tiprel_1mes_lag_thr
0.0 ult_fec_cli_1t_lag_thr
0.01366 age_lag_fou
0.0 antiguedad_lag_fou
0.0 canal_entrada_lag_fou
0.0 cod_prov_lag_fou
0.0 conyuemp_lag_fou
0.0 fecha_alta_lag_fou
0.0 ind_actividad_cliente_lag_fou
0.0 ind_ahor_fin_ult1_lag_fou
0.0 ind_aval_fin_ult1_lag_fou
0.00024 ind_cco_fin_ult1_lag_fou
0.0 ind_cder_fin_ult1_lag_fou
0.0 ind_cno_fin_ult1_lag_fou
0.0 ind_ctju_fin_ult1_lag_fou
0.0 ind_ctma_fin_ult1_lag_fou
0.0 ind_ctop_fin_ult1_lag_fou
0.0 ind_ctpp_fin_ult1_lag_fou
0.0 ind_deco_fin_ult1_lag_fou
0.0 ind_dela_fin_ult1_lag_fou
0.0 ind_deme_fin_ult1_lag_fou
0.0 ind_ecue_fin_ult1_lag_fou
0.0 ind_empleado_lag_fou
0.0 ind_fond_fin_ult1_lag_fou
0.0 ind_hip_fin_ult1_lag_fou
0.0 ind_nom_pens_ult1_lag_fou
0.0 ind_nomina_ult1_lag_fou
0.0 ind_nuevo_lag_fou
0.0 ind_plan_fin_ult1_lag_fou
0.0 ind_pres_fin_ult1_lag_fou
0.0 ind_reca_fin_ult1_lag_fou
0.0 ind_recibo_ult1_lag_fou
0.0 ind_tjcr_fin_ult1_lag_fou
0.0 ind_valo_fin_ult1_lag_fou
0.0 ind_viv_fin_ult1_lag_fou
0.0 indext_lag_fou
0.0 indfall_lag_fou
0.0 indrel_lag_fou
0.0 indrel_1mes_lag_fou
0.0 indresi_lag_fou
0.0 nomprov_lag_fou
0.0 pais_residencia_lag_fou
0.0 renta_lag_fou
0.0 segmento_lag_fou
0.0 sexo_lag_fou
0.0 tiprel_1mes_lag_fou
0.0 ult_fec_cli_1t_lag_fou
0.0 age_lag_fiv
0.0 antiguedad_lag_fiv
0.0 canal_entrada_lag_fiv
0.0 cod_prov_lag_fiv
0.0 conyuemp_lag_fiv
0.0 fecha_alta_lag_fiv
0.0 ind_actividad_cliente_lag_fiv
0.0 ind_ahor_fin_ult1_lag_fiv
0.0 ind_aval_fin_ult1_lag_fiv
0.0 ind_cco_fin_ult1_lag_fiv
0.0 ind_cder_fin_ult1_lag_fiv
0.0 ind_cno_fin_ult1_lag_fiv
0.0 ind_ctju_fin_ult1_lag_fiv
0.0 ind_ctma_fin_ult1_lag_fiv
0.0 ind_ctop_fin_ult1_lag_fiv
0.0 ind_ctpp_fin_ult1_lag_fiv
0.0 ind_deco_fin_ult1_lag_fiv
0.0 ind_dela_fin_ult1_lag_fiv
0.0 ind_deme_fin_ult1_lag_fiv
0.0 ind_ecue_fin_ult1_lag_fiv
0.0 ind_empleado_lag_fiv
0.0 ind_fond_fin_ult1_lag_fiv
0.0 ind_hip_fin_ult1_lag_fiv
0.03565 ind_nom_pens_ult1_lag_fiv
0.0 ind_nomina_ult1_lag_fiv
0.0 ind_nuevo_lag_fiv
0.0 ind_plan_fin_ult1_lag_fiv
0.0 ind_pres_fin_ult1_lag_fiv
0.0 ind_reca_fin_ult1_lag_fiv
0.0 ind_recibo_ult1_lag_fiv
0.0 ind_tjcr_fin_ult1_lag_fiv
0.0 ind_valo_fin_ult1_lag_fiv
0.0 ind_viv_fin_ult1_lag_fiv
0.0 indext_lag_fiv
0.0 indfall_lag_fiv
0.0 indrel_lag_fiv
0.0 indrel_1mes_lag_fiv
0.0 indresi_lag_fiv
0.0 nomprov_lag_fiv
0.0 pais_residencia_lag_fiv
0.0 renta_lag_fiv
0.0 segmento_lag_fiv
0.0 sexo_lag_fiv
0.0 tiprel_1mes_lag_fiv
0.0 ult_fec_cli_1t_lag_fiv
--------------------------------------------------
# Sorted Feature Importance
0.28643 ind_nom_pens_ult1_lag_two
0.18204 ind_cco_fin_ult1_lag_one
0.15261 ind_nom_pens_ult1_lag_one
0.13831 ind_recibo_ult1_lag_one
0.0624 ind_nomina_ult1_lag_two
0.04215 ind_recibo_ult1_lag_two
0.03565 ind_nom_pens_ult1_lag_fiv
0.01994 ind_tjcr_fin_ult1_lag_one
0.0188 ind_nom_pens_ult1_lag_thr
0.01669 ind_recibo_ult1_lag_thr
0.01366 age_lag_fou
0.01212 ind_ctma_fin_ult1_lag_thr
0.01045 ind_cno_fin_ult1_lag_one
0.00712 fecha_alta
0.0014 ind_cno_fin_ult1_lag_two
0.00024 ind_cco_fin_ult1_lag_fou
0.0 ult_fec_cli_1t_lag_one
0.0 ind_dela_fin_ult1_lag_thr
0.0 ind_cder_fin_ult1_lag_two
0.0 sexo
0.0 renta_lag_two
0.0 nomprov_lag_fou
0.0 ult_fec_cli_1t_lag_fiv
0.0 ind_cder_fin_ult1_lag_fou
0.0 ind_aval_fin_ult1_lag_fou
0.0 indext_lag_one
0.0 ind_tjcr_fin_ult1_lag_two
0.0 cod_prov
0.0 ind_valo_fin_ult1_lag_fou
0.0 pais_residencia_lag_fou
0.0 ind_ahor_fin_ult1_lag_thr
0.0 ind_ctpp_fin_ult1_lag_fiv
0.0 renta
0.0 ind_tjcr_fin_ult1_lag_fiv
0.0 indext_lag_fiv
0.0 nomprov
0.0 tiprel_1mes_lag_fiv
0.0 ind_cno_fin_ult1_lag_thr
0.0 ind_cco_fin_ult1_lag_fiv
0.0 ind_ahor_fin_ult1_lag_fiv
0.0 ind_viv_fin_ult1_lag_one
0.0 fecha_alta_lag_fou
0.0 ind_recibo_ult1_lag_fou
0.0 ind_hip_fin_ult1_lag_one
0.0 ind_ctop_fin_ult1_lag_two
0.0 ind_empleado_lag_one
0.0 ult_fec_cli_1t_lag_thr
0.0 conyuemp_lag_two
0.0 ind_cno_fin_ult1_lag_fiv
0.0 sexo_lag_fiv
0.0 cod_prov_lag_two
0.0 ind_reca_fin_ult1_lag_fou
0.0 ind_valo_fin_ult1_lag_two
0.0 ind_cder_fin_ult1_lag_one
0.0 indrel_lag_fiv
0.0 ind_ctpp_fin_ult1_lag_thr
0.0 indrel_1mes_lag_two
0.0 ind_reca_fin_ult1_lag_fiv
0.0 ind_pres_fin_ult1_lag_fou
0.0 ind_empleado_lag_fou
0.0 ind_ctma_fin_ult1_lag_fiv
0.0 ind_actividad_cliente
0.0 cod_prov_lag_one
0.0 canal_entrada_lag_thr
0.0 fecha_alta_lag_thr
0.0 ind_nomina_ult1_lag_thr
0.0 ind_viv_fin_ult1_lag_thr
0.0 ind_valo_fin_ult1_lag_one
0.0 ind_fond_fin_ult1_lag_one
0.0 ind_pres_fin_ult1_lag_thr
0.0 ind_valo_fin_ult1_lag_fiv
0.0 pais_residencia_lag_one
0.0 ind_cco_fin_ult1_lag_thr
0.0 cod_prov_lag_fou
0.0 canal_entrada_lag_fou
0.0 segmento_lag_one
0.0 pais_residencia_lag_fiv
0.0 ind_dela_fin_ult1_lag_one
0.0 indext
0.0 ind_hip_fin_ult1_lag_two
0.0 renta_lag_one
0.0 indrel_1mes_lag_one
0.0 ind_pres_fin_ult1_lag_fiv
0.0 ind_empleado
0.0 antiguedad
0.0 nomprov_lag_two
0.0 segmento_lag_two
0.0 ind_deco_fin_ult1_lag_one
0.0 pais_residencia
0.0 indext_lag_thr
0.0 indfall
0.0 ind_actividad_cliente_lag_thr
0.0 indfall_lag_thr
0.0 ind_ecue_fin_ult1_lag_fou
0.0 indresi_lag_one
0.0 ind_empleado_lag_thr
0.0 segmento
0.0 fecha_alta_lag_one
0.0 ind_ahor_fin_ult1_lag_fou
0.0 antiguedad_lag_thr
0.0 ind_aval_fin_ult1_lag_thr
0.0 ind_cco_fin_ult1_lag_two
0.0 ind_empleado_lag_fiv
0.0 sexo_lag_thr
0.0 nomprov_lag_thr
0.0 conyuemp_lag_fiv
0.0 fecha_alta_lag_fiv
0.0 ind_pres_fin_ult1_lag_one
0.0 ind_ecue_fin_ult1_lag_two
0.0 ind_reca_fin_ult1_lag_two
0.0 ind_deme_fin_ult1_lag_thr
0.0 conyuemp
0.0 ind_reca_fin_ult1_lag_one
0.0 ult_fec_cli_1t
0.0 ind_ctpp_fin_ult1_lag_two
0.0 ind_viv_fin_ult1_lag_fiv
0.0 ind_dela_fin_ult1_lag_two
0.0 antiguedad_lag_fou
0.0 ind_nuevo_lag_fou
0.0 ind_ctju_fin_ult1_lag_fiv
0.0 ind_valo_fin_ult1_lag_thr
0.0 indext_lag_two
0.0 indresi_lag_two
0.0 ind_hip_fin_ult1_lag_thr
0.0 ind_nuevo_lag_two
0.0 ind_ctop_fin_ult1_lag_one
0.0 indfall_lag_fiv
0.0 ind_deme_fin_ult1_lag_fou
0.0 ind_aval_fin_ult1_lag_one
0.0 ind_reca_fin_ult1_lag_thr
0.0 ult_fec_cli_1t_lag_two
0.0 age_lag_two
0.0 ind_ctpp_fin_ult1_lag_one
0.0 indrel_lag_fou
0.0 ind_tjcr_fin_ult1_lag_thr
0.0 ind_nuevo_lag_one
0.0 ind_ctju_fin_ult1_lag_two
0.0 indresi_lag_fiv
0.0 tiprel_1mes_lag_fou
0.0 ult_fec_cli_1t_lag_fou
0.0 indfall_lag_one
0.0 renta_lag_fou
0.0 indext_lag_fou
0.0 ind_ctma_fin_ult1_lag_two
0.0 conyuemp_lag_fou
0.0 ind_ctpp_fin_ult1_lag_fou
0.0 ind_nom_pens_ult1_lag_fou
0.0 ind_deme_fin_ult1_lag_fiv
0.0 canal_entrada_lag_one
0.0 ind_hip_fin_ult1_lag_fiv
0.0 ind_ctma_fin_ult1_lag_one
0.0 ind_deme_fin_ult1_lag_two
0.0 indrel
0.0 ind_ahor_fin_ult1_lag_one
0.0 ind_fond_fin_ult1_lag_fou
0.0 ind_recibo_ult1_lag_fiv
0.0 ind_deco_fin_ult1_lag_fou
0.0 nomprov_lag_one
0.0 ind_fond_fin_ult1_lag_two
0.0 tiprel_1mes_lag_one
0.0 ind_nuevo
0.0 indrel_1mes_lag_thr
0.0 ind_deco_fin_ult1_lag_thr
0.0 canal_entrada_lag_fiv
0.0 ind_ctju_fin_ult1_lag_fou
0.0 conyuemp_lag_thr
0.0 ind_deco_fin_ult1_lag_two
0.0 fecha_alta_lag_two
0.0 canal_entrada_lag_two
0.0 ind_viv_fin_ult1_lag_fou
0.0 ind_aval_fin_ult1_lag_fiv
0.0 ind_deme_fin_ult1_lag_one
0.0 sexo_lag_one
0.0 cod_prov_lag_fiv
0.0 age_lag_one
0.0 ind_aval_fin_ult1_lag_two
0.0 ind_plan_fin_ult1_lag_thr
0.0 ind_ctop_fin_ult1_lag_fou
0.0 ind_nuevo_lag_thr
0.0 tiprel_1mes_lag_two
0.0 antiguedad_lag_one
0.0 indresi_lag_fou
0.0 cod_prov_lag_thr
0.0 ind_empleado_lag_two
0.0 indresi_lag_thr
0.0 conyuemp_lag_one
0.0 ind_plan_fin_ult1_lag_fou
0.0 ind_ctju_fin_ult1_lag_thr
0.0 indrel_lag_one
0.0 ind_cno_fin_ult1_lag_fou
0.0 ind_dela_fin_ult1_lag_fiv
0.0 ind_actividad_cliente_lag_two
0.0 ind_ecue_fin_ult1_lag_thr
0.0 ind_plan_fin_ult1_lag_one
0.0 indrel_lag_thr
0.0 age
0.0 ind_tjcr_fin_ult1_lag_fou
0.0 ind_ctop_fin_ult1_lag_fiv
0.0 segmento_lag_fou
0.0 segmento_lag_fiv
0.0 ind_nomina_ult1_lag_one
0.0 canal_entrada
0.0 age_lag_fiv
0.0 ind_deco_fin_ult1_lag_fiv
0.0 indrel_lag_two
0.0 segmento_lag_thr
0.0 ind_ecue_fin_ult1_lag_one
0.0 indrel_1mes_lag_fiv
0.0 renta_lag_fiv
0.0 age_lag_thr
0.0 renta_lag_thr
0.0 ind_dela_fin_ult1_lag_fou
0.0 indfall_lag_two
0.0 ind_plan_fin_ult1_lag_fiv
0.0 ind_nuevo_lag_fiv
0.0 indresi
0.0 sexo_lag_fou
0.0 antiguedad_lag_two
0.0 ind_fond_fin_ult1_lag_thr
0.0 ind_nomina_ult1_lag_fiv
0.0 ind_plan_fin_ult1_lag_two
0.0 ind_viv_fin_ult1_lag_two
0.0 ind_pres_fin_ult1_lag_two
0.0 antiguedad_lag_fiv
0.0 ind_ahor_fin_ult1_lag_two
0.0 ind_ctop_fin_ult1_lag_thr
0.0 ind_actividad_cliente_lag_one
0.0 ind_actividad_cliente_lag_fou
0.0 tiprel_1mes_lag_thr
0.0 ind_ecue_fin_ult1_lag_fiv
0.0 ind_ctju_fin_ult1_lag_one
0.0 pais_residencia_lag_thr
0.0 indrel_1mes_lag_fou
0.0 indrel_1mes
0.0 ind_ctma_fin_ult1_lag_fou
0.0 ind_actividad_cliente_lag_fiv
0.0 ind_hip_fin_ult1_lag_fou
0.0 ind_cder_fin_ult1_lag_fiv
0.0 indfall_lag_fou
0.0 sexo_lag_two
0.0 tiprel_1mes
0.0 ind_fond_fin_ult1_lag_fiv
0.0 ind_cder_fin_ult1_lag_thr
0.0 nomprov_lag_fiv
0.0 pais_residencia_lag_two
0.0 ind_nomina_ult1_lag_fou
In [22]:
# 주요 변수 시각화
plot_fimp(dt_fimp)
In [23]:
# 모델 상세 보기
rf_fimp = observe_model_tree(trn, rf_model)
==================================================
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=10, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=-1, oob_score=False, random_state=777,
verbose=0, warm_start=False)
==================================================
# Feature Importance
[ 2.71608365e-02 9.53519959e-03 3.88301303e-03 2.28874070e-03
0.00000000e+00 6.57678052e-03 8.74417537e-04 3.06648148e-05
1.21417512e-03 4.39033270e-04 1.36754165e-05 3.07072666e-05
1.06782248e-06 9.47888981e-06 2.75825089e-03 2.86905252e-05
3.08559961e-03 7.60711602e-03 9.29999158e-04 1.04699917e-03
4.22859953e-05 9.29198640e-03 3.10912939e-03 3.19439309e-02
1.36434185e-03 0.00000000e+00 1.19456972e-02 1.44681491e-02
0.00000000e+00 0.00000000e+00 5.94572239e-02 3.34672687e-05
1.16552066e-02 1.30182812e-03 3.53770111e-03 1.44773235e-04
1.87499580e-04 7.61612694e-04 3.28405120e-04 5.86880926e-05
4.80893435e-04 0.00000000e+00 4.57316081e-05 4.59753008e-05
5.19686834e-02 5.14788278e-02 1.00234827e-04 5.06094069e-05
0.00000000e+00 2.46161002e-03 5.08717765e-02 1.59576146e-02
2.25858191e-04 5.52105315e-05 1.82265651e-04 0.00000000e+00
0.00000000e+00 0.00000000e+00 1.06557621e-02 9.95418434e-03
1.06572242e-04 4.27317044e-03 2.16729963e-03 4.71156904e-04
1.37479288e-03 6.41873011e-04 2.24190709e-02 1.39459585e-03
2.38214581e-03 1.26856976e-03 2.16237331e-03 5.70343006e-03
8.91670361e-05 0.00000000e+00 0.00000000e+00 1.97924332e-02
0.00000000e+00 2.85169982e-03 9.81940802e-04 5.23995621e-03
1.53393544e-04 9.19712728e-05 4.75149238e-04 9.27879132e-04
1.45631279e-05 7.29965834e-04 2.78690580e-04 9.50165545e-05
8.23717646e-05 5.33856796e-02 1.01940701e-02 9.91356289e-05
3.35222425e-05 1.82171352e-05 1.53510788e-03 6.67784464e-03
3.46042124e-03 1.62803234e-04 2.94033115e-05 8.29261694e-05
0.00000000e+00 0.00000000e+00 5.01200138e-06 8.68038744e-06
7.13777981e-04 1.65975189e-02 1.96131366e-03 1.25792226e-03
1.49760738e-04 5.90064454e-05 4.95529549e-04 9.53593404e-03
2.79861270e-03 6.43113842e-04 1.19840666e-03 2.74090575e-04
2.64824114e-03 4.88022780e-04 0.00000000e+00 0.00000000e+00
1.41866045e-03 1.54891741e-05 1.26470724e-02 4.26246634e-04
6.61405564e-03 1.07136449e-04 1.69180268e-04 2.30016599e-03
7.25052929e-04 1.96507216e-05 1.27333277e-03 1.13607972e-04
8.25832318e-05 8.83424342e-05 1.74120532e-02 2.40779706e-02
1.45737924e-04 7.98674493e-05 2.17853173e-05 7.76609336e-04
4.59263235e-03 7.34065446e-03 1.67631054e-04 3.44164164e-05
1.93881120e-04 0.00000000e+00 0.00000000e+00 0.00000000e+00
1.08468041e-05 1.25652193e-03 1.92059578e-04 1.49188379e-03
2.34975952e-03 3.04474337e-04 2.38915195e-03 5.52634710e-05
7.71534189e-03 4.22366802e-03 1.26316590e-03 8.84033479e-04
0.00000000e+00 1.80246208e-03 1.72486458e-04 0.00000000e+00
0.00000000e+00 7.14194380e-03 1.86850775e-05 1.42167595e-02
0.00000000e+00 7.61077485e-05 5.09562503e-04 1.75638772e-04
0.00000000e+00 4.34832694e-04 5.75014978e-05 3.62932732e-04
1.20685623e-04 6.86990484e-05 5.12865420e-05 2.26993003e-02
7.14893988e-03 9.44927064e-05 6.65649457e-05 9.87457348e-05
1.47004702e-03 5.31744210e-03 3.43983570e-03 2.17804508e-04
8.63956129e-05 2.17274537e-04 1.94718581e-05 1.23778583e-05
0.00000000e+00 9.12323252e-05 1.04929815e-03 4.61495392e-03
1.44568685e-03 2.10642489e-03 2.51385574e-04 1.47303906e-04
8.70309599e-06 1.50146620e-02 4.31344112e-03 7.35652331e-04
1.04441811e-03 1.30404928e-04 3.31023716e-03 1.45298510e-03
0.00000000e+00 0.00000000e+00 3.42955446e-02 1.17652919e-05
4.47550598e-02 0.00000000e+00 6.54560645e-05 2.16505899e-04
1.71072405e-04 0.00000000e+00 5.37195559e-04 0.00000000e+00
4.78322228e-04 4.48786824e-03 6.36835002e-05 1.94415363e-04
5.35995770e-02 3.16454703e-02 0.00000000e+00 1.19886101e-04
0.00000000e+00 2.38217214e-03 8.07674159e-03 5.36105675e-03
1.20442992e-04 3.90855970e-05 1.88628629e-04 0.00000000e+00
4.27188001e-05 0.00000000e+00 1.04494735e-03 1.82994333e-03
2.24121120e-04 1.38039907e-03 7.43092083e-04 1.18824902e-04
1.41011080e-04 5.05005044e-04]
--------------------------------------------------
# Mapped to Column Name
0.02716 age
0.00954 antiguedad
0.00388 canal_entrada
0.00229 cod_prov
0.0 conyuemp
0.00658 fecha_alta
0.00087 ind_actividad_cliente
3e-05 ind_empleado
0.00121 ind_nuevo
0.00044 indext
1e-05 indfall
3e-05 indrel
0.0 indrel_1mes
1e-05 indresi
0.00276 nomprov
3e-05 pais_residencia
0.00309 renta
0.00761 segmento
0.00093 sexo
0.00105 tiprel_1mes
4e-05 ult_fec_cli_1t
0.00929 age_lag_one
0.00311 antiguedad_lag_one
0.03194 canal_entrada_lag_one
0.00136 cod_prov_lag_one
0.0 conyuemp_lag_one
0.01195 fecha_alta_lag_one
0.01447 ind_actividad_cliente_lag_one
0.0 ind_ahor_fin_ult1_lag_one
0.0 ind_aval_fin_ult1_lag_one
0.05946 ind_cco_fin_ult1_lag_one
3e-05 ind_cder_fin_ult1_lag_one
0.01166 ind_cno_fin_ult1_lag_one
0.0013 ind_ctju_fin_ult1_lag_one
0.00354 ind_ctma_fin_ult1_lag_one
0.00014 ind_ctop_fin_ult1_lag_one
0.00019 ind_ctpp_fin_ult1_lag_one
0.00076 ind_deco_fin_ult1_lag_one
0.00033 ind_dela_fin_ult1_lag_one
6e-05 ind_deme_fin_ult1_lag_one
0.00048 ind_ecue_fin_ult1_lag_one
0.0 ind_empleado_lag_one
5e-05 ind_fond_fin_ult1_lag_one
5e-05 ind_hip_fin_ult1_lag_one
0.05197 ind_nom_pens_ult1_lag_one
0.05148 ind_nomina_ult1_lag_one
0.0001 ind_nuevo_lag_one
5e-05 ind_plan_fin_ult1_lag_one
0.0 ind_pres_fin_ult1_lag_one
0.00246 ind_reca_fin_ult1_lag_one
0.05087 ind_recibo_ult1_lag_one
0.01596 ind_tjcr_fin_ult1_lag_one
0.00023 ind_valo_fin_ult1_lag_one
6e-05 ind_viv_fin_ult1_lag_one
0.00018 indext_lag_one
0.0 indfall_lag_one
0.0 indrel_lag_one
0.0 indrel_1mes_lag_one
0.01066 indresi_lag_one
0.00995 nomprov_lag_one
0.00011 pais_residencia_lag_one
0.00427 renta_lag_one
0.00217 segmento_lag_one
0.00047 sexo_lag_one
0.00137 tiprel_1mes_lag_one
0.00064 ult_fec_cli_1t_lag_one
0.02242 age_lag_two
0.00139 antiguedad_lag_two
0.00238 canal_entrada_lag_two
0.00127 cod_prov_lag_two
0.00216 conyuemp_lag_two
0.0057 fecha_alta_lag_two
9e-05 ind_actividad_cliente_lag_two
0.0 ind_ahor_fin_ult1_lag_two
0.0 ind_aval_fin_ult1_lag_two
0.01979 ind_cco_fin_ult1_lag_two
0.0 ind_cder_fin_ult1_lag_two
0.00285 ind_cno_fin_ult1_lag_two
0.00098 ind_ctju_fin_ult1_lag_two
0.00524 ind_ctma_fin_ult1_lag_two
0.00015 ind_ctop_fin_ult1_lag_two
9e-05 ind_ctpp_fin_ult1_lag_two
0.00048 ind_deco_fin_ult1_lag_two
0.00093 ind_dela_fin_ult1_lag_two
1e-05 ind_deme_fin_ult1_lag_two
0.00073 ind_ecue_fin_ult1_lag_two
0.00028 ind_empleado_lag_two
0.0001 ind_fond_fin_ult1_lag_two
8e-05 ind_hip_fin_ult1_lag_two
0.05339 ind_nom_pens_ult1_lag_two
0.01019 ind_nomina_ult1_lag_two
0.0001 ind_nuevo_lag_two
3e-05 ind_plan_fin_ult1_lag_two
2e-05 ind_pres_fin_ult1_lag_two
0.00154 ind_reca_fin_ult1_lag_two
0.00668 ind_recibo_ult1_lag_two
0.00346 ind_tjcr_fin_ult1_lag_two
0.00016 ind_valo_fin_ult1_lag_two
3e-05 ind_viv_fin_ult1_lag_two
8e-05 indext_lag_two
0.0 indfall_lag_two
0.0 indrel_lag_two
1e-05 indrel_1mes_lag_two
1e-05 indresi_lag_two
0.00071 nomprov_lag_two
0.0166 pais_residencia_lag_two
0.00196 renta_lag_two
0.00126 segmento_lag_two
0.00015 sexo_lag_two
6e-05 tiprel_1mes_lag_two
0.0005 ult_fec_cli_1t_lag_two
0.00954 age_lag_thr
0.0028 antiguedad_lag_thr
0.00064 canal_entrada_lag_thr
0.0012 cod_prov_lag_thr
0.00027 conyuemp_lag_thr
0.00265 fecha_alta_lag_thr
0.00049 ind_actividad_cliente_lag_thr
0.0 ind_ahor_fin_ult1_lag_thr
0.0 ind_aval_fin_ult1_lag_thr
0.00142 ind_cco_fin_ult1_lag_thr
2e-05 ind_cder_fin_ult1_lag_thr
0.01265 ind_cno_fin_ult1_lag_thr
0.00043 ind_ctju_fin_ult1_lag_thr
0.00661 ind_ctma_fin_ult1_lag_thr
0.00011 ind_ctop_fin_ult1_lag_thr
0.00017 ind_ctpp_fin_ult1_lag_thr
0.0023 ind_deco_fin_ult1_lag_thr
0.00073 ind_dela_fin_ult1_lag_thr
2e-05 ind_deme_fin_ult1_lag_thr
0.00127 ind_ecue_fin_ult1_lag_thr
0.00011 ind_empleado_lag_thr
8e-05 ind_fond_fin_ult1_lag_thr
9e-05 ind_hip_fin_ult1_lag_thr
0.01741 ind_nom_pens_ult1_lag_thr
0.02408 ind_nomina_ult1_lag_thr
0.00015 ind_nuevo_lag_thr
8e-05 ind_plan_fin_ult1_lag_thr
2e-05 ind_pres_fin_ult1_lag_thr
0.00078 ind_reca_fin_ult1_lag_thr
0.00459 ind_recibo_ult1_lag_thr
0.00734 ind_tjcr_fin_ult1_lag_thr
0.00017 ind_valo_fin_ult1_lag_thr
3e-05 ind_viv_fin_ult1_lag_thr
0.00019 indext_lag_thr
0.0 indfall_lag_thr
0.0 indrel_lag_thr
0.0 indrel_1mes_lag_thr
1e-05 indresi_lag_thr
0.00126 nomprov_lag_thr
0.00019 pais_residencia_lag_thr
0.00149 renta_lag_thr
0.00235 segmento_lag_thr
0.0003 sexo_lag_thr
0.00239 tiprel_1mes_lag_thr
6e-05 ult_fec_cli_1t_lag_thr
0.00772 age_lag_fou
0.00422 antiguedad_lag_fou
0.00126 canal_entrada_lag_fou
0.00088 cod_prov_lag_fou
0.0 conyuemp_lag_fou
0.0018 fecha_alta_lag_fou
0.00017 ind_actividad_cliente_lag_fou
0.0 ind_ahor_fin_ult1_lag_fou
0.0 ind_aval_fin_ult1_lag_fou
0.00714 ind_cco_fin_ult1_lag_fou
2e-05 ind_cder_fin_ult1_lag_fou
0.01422 ind_cno_fin_ult1_lag_fou
0.0 ind_ctju_fin_ult1_lag_fou
8e-05 ind_ctma_fin_ult1_lag_fou
0.00051 ind_ctop_fin_ult1_lag_fou
0.00018 ind_ctpp_fin_ult1_lag_fou
0.0 ind_deco_fin_ult1_lag_fou
0.00043 ind_dela_fin_ult1_lag_fou
6e-05 ind_deme_fin_ult1_lag_fou
0.00036 ind_ecue_fin_ult1_lag_fou
0.00012 ind_empleado_lag_fou
7e-05 ind_fond_fin_ult1_lag_fou
5e-05 ind_hip_fin_ult1_lag_fou
0.0227 ind_nom_pens_ult1_lag_fou
0.00715 ind_nomina_ult1_lag_fou
9e-05 ind_nuevo_lag_fou
7e-05 ind_plan_fin_ult1_lag_fou
0.0001 ind_pres_fin_ult1_lag_fou
0.00147 ind_reca_fin_ult1_lag_fou
0.00532 ind_recibo_ult1_lag_fou
0.00344 ind_tjcr_fin_ult1_lag_fou
0.00022 ind_valo_fin_ult1_lag_fou
9e-05 ind_viv_fin_ult1_lag_fou
0.00022 indext_lag_fou
2e-05 indfall_lag_fou
1e-05 indrel_lag_fou
0.0 indrel_1mes_lag_fou
9e-05 indresi_lag_fou
0.00105 nomprov_lag_fou
0.00461 pais_residencia_lag_fou
0.00145 renta_lag_fou
0.00211 segmento_lag_fou
0.00025 sexo_lag_fou
0.00015 tiprel_1mes_lag_fou
1e-05 ult_fec_cli_1t_lag_fou
0.01501 age_lag_fiv
0.00431 antiguedad_lag_fiv
0.00074 canal_entrada_lag_fiv
0.00104 cod_prov_lag_fiv
0.00013 conyuemp_lag_fiv
0.00331 fecha_alta_lag_fiv
0.00145 ind_actividad_cliente_lag_fiv
0.0 ind_ahor_fin_ult1_lag_fiv
0.0 ind_aval_fin_ult1_lag_fiv
0.0343 ind_cco_fin_ult1_lag_fiv
1e-05 ind_cder_fin_ult1_lag_fiv
0.04476 ind_cno_fin_ult1_lag_fiv
0.0 ind_ctju_fin_ult1_lag_fiv
7e-05 ind_ctma_fin_ult1_lag_fiv
0.00022 ind_ctop_fin_ult1_lag_fiv
0.00017 ind_ctpp_fin_ult1_lag_fiv
0.0 ind_deco_fin_ult1_lag_fiv
0.00054 ind_dela_fin_ult1_lag_fiv
0.0 ind_deme_fin_ult1_lag_fiv
0.00048 ind_ecue_fin_ult1_lag_fiv
0.00449 ind_empleado_lag_fiv
6e-05 ind_fond_fin_ult1_lag_fiv
0.00019 ind_hip_fin_ult1_lag_fiv
0.0536 ind_nom_pens_ult1_lag_fiv
0.03165 ind_nomina_ult1_lag_fiv
0.0 ind_nuevo_lag_fiv
0.00012 ind_plan_fin_ult1_lag_fiv
0.0 ind_pres_fin_ult1_lag_fiv
0.00238 ind_reca_fin_ult1_lag_fiv
0.00808 ind_recibo_ult1_lag_fiv
0.00536 ind_tjcr_fin_ult1_lag_fiv
0.00012 ind_valo_fin_ult1_lag_fiv
4e-05 ind_viv_fin_ult1_lag_fiv
0.00019 indext_lag_fiv
0.0 indfall_lag_fiv
4e-05 indrel_lag_fiv
0.0 indrel_1mes_lag_fiv
0.00104 indresi_lag_fiv
0.00183 nomprov_lag_fiv
0.00022 pais_residencia_lag_fiv
0.00138 renta_lag_fiv
0.00074 segmento_lag_fiv
0.00012 sexo_lag_fiv
0.00014 tiprel_1mes_lag_fiv
0.00051 ult_fec_cli_1t_lag_fiv
--------------------------------------------------
# Sorted Feature Importance
0.05946 ind_cco_fin_ult1_lag_one
0.0536 ind_nom_pens_ult1_lag_fiv
0.05339 ind_nom_pens_ult1_lag_two
0.05197 ind_nom_pens_ult1_lag_one
0.05148 ind_nomina_ult1_lag_one
0.05087 ind_recibo_ult1_lag_one
0.04476 ind_cno_fin_ult1_lag_fiv
0.0343 ind_cco_fin_ult1_lag_fiv
0.03194 canal_entrada_lag_one
0.03165 ind_nomina_ult1_lag_fiv
0.02716 age
0.02408 ind_nomina_ult1_lag_thr
0.0227 ind_nom_pens_ult1_lag_fou
0.02242 age_lag_two
0.01979 ind_cco_fin_ult1_lag_two
0.01741 ind_nom_pens_ult1_lag_thr
0.0166 pais_residencia_lag_two
0.01596 ind_tjcr_fin_ult1_lag_one
0.01501 age_lag_fiv
0.01447 ind_actividad_cliente_lag_one
0.01422 ind_cno_fin_ult1_lag_fou
0.01265 ind_cno_fin_ult1_lag_thr
0.01195 fecha_alta_lag_one
0.01166 ind_cno_fin_ult1_lag_one
0.01066 indresi_lag_one
0.01019 ind_nomina_ult1_lag_two
0.00995 nomprov_lag_one
0.00954 age_lag_thr
0.00954 antiguedad
0.00929 age_lag_one
0.00808 ind_recibo_ult1_lag_fiv
0.00772 age_lag_fou
0.00761 segmento
0.00734 ind_tjcr_fin_ult1_lag_thr
0.00715 ind_nomina_ult1_lag_fou
0.00714 ind_cco_fin_ult1_lag_fou
0.00668 ind_recibo_ult1_lag_two
0.00661 ind_ctma_fin_ult1_lag_thr
0.00658 fecha_alta
0.0057 fecha_alta_lag_two
0.00536 ind_tjcr_fin_ult1_lag_fiv
0.00532 ind_recibo_ult1_lag_fou
0.00524 ind_ctma_fin_ult1_lag_two
0.00461 pais_residencia_lag_fou
0.00459 ind_recibo_ult1_lag_thr
0.00449 ind_empleado_lag_fiv
0.00431 antiguedad_lag_fiv
0.00427 renta_lag_one
0.00422 antiguedad_lag_fou
0.00388 canal_entrada
0.00354 ind_ctma_fin_ult1_lag_one
0.00346 ind_tjcr_fin_ult1_lag_two
0.00344 ind_tjcr_fin_ult1_lag_fou
0.00331 fecha_alta_lag_fiv
0.00311 antiguedad_lag_one
0.00309 renta
0.00285 ind_cno_fin_ult1_lag_two
0.0028 antiguedad_lag_thr
0.00276 nomprov
0.00265 fecha_alta_lag_thr
0.00246 ind_reca_fin_ult1_lag_one
0.00239 tiprel_1mes_lag_thr
0.00238 ind_reca_fin_ult1_lag_fiv
0.00238 canal_entrada_lag_two
0.00235 segmento_lag_thr
0.0023 ind_deco_fin_ult1_lag_thr
0.00229 cod_prov
0.00217 segmento_lag_one
0.00216 conyuemp_lag_two
0.00211 segmento_lag_fou
0.00196 renta_lag_two
0.00183 nomprov_lag_fiv
0.0018 fecha_alta_lag_fou
0.00154 ind_reca_fin_ult1_lag_two
0.00149 renta_lag_thr
0.00147 ind_reca_fin_ult1_lag_fou
0.00145 ind_actividad_cliente_lag_fiv
0.00145 renta_lag_fou
0.00142 ind_cco_fin_ult1_lag_thr
0.00139 antiguedad_lag_two
0.00138 renta_lag_fiv
0.00137 tiprel_1mes_lag_one
0.00136 cod_prov_lag_one
0.0013 ind_ctju_fin_ult1_lag_one
0.00127 ind_ecue_fin_ult1_lag_thr
0.00127 cod_prov_lag_two
0.00126 canal_entrada_lag_fou
0.00126 segmento_lag_two
0.00126 nomprov_lag_thr
0.00121 ind_nuevo
0.0012 cod_prov_lag_thr
0.00105 nomprov_lag_fou
0.00105 tiprel_1mes
0.00104 indresi_lag_fiv
0.00104 cod_prov_lag_fiv
0.00098 ind_ctju_fin_ult1_lag_two
0.00093 sexo
0.00093 ind_dela_fin_ult1_lag_two
0.00088 cod_prov_lag_fou
0.00087 ind_actividad_cliente
0.00078 ind_reca_fin_ult1_lag_thr
0.00076 ind_deco_fin_ult1_lag_one
0.00074 segmento_lag_fiv
0.00074 canal_entrada_lag_fiv
0.00073 ind_ecue_fin_ult1_lag_two
0.00073 ind_dela_fin_ult1_lag_thr
0.00071 nomprov_lag_two
0.00064 canal_entrada_lag_thr
0.00064 ult_fec_cli_1t_lag_one
0.00054 ind_dela_fin_ult1_lag_fiv
0.00051 ind_ctop_fin_ult1_lag_fou
0.00051 ult_fec_cli_1t_lag_fiv
0.0005 ult_fec_cli_1t_lag_two
0.00049 ind_actividad_cliente_lag_thr
0.00048 ind_ecue_fin_ult1_lag_one
0.00048 ind_ecue_fin_ult1_lag_fiv
0.00048 ind_deco_fin_ult1_lag_two
0.00047 sexo_lag_one
0.00044 indext
0.00043 ind_dela_fin_ult1_lag_fou
0.00043 ind_ctju_fin_ult1_lag_thr
0.00036 ind_ecue_fin_ult1_lag_fou
0.00033 ind_dela_fin_ult1_lag_one
0.0003 sexo_lag_thr
0.00028 ind_empleado_lag_two
0.00027 conyuemp_lag_thr
0.00025 sexo_lag_fou
0.00023 ind_valo_fin_ult1_lag_one
0.00022 pais_residencia_lag_fiv
0.00022 ind_valo_fin_ult1_lag_fou
0.00022 indext_lag_fou
0.00022 ind_ctop_fin_ult1_lag_fiv
0.00019 ind_hip_fin_ult1_lag_fiv
0.00019 indext_lag_thr
0.00019 pais_residencia_lag_thr
0.00019 indext_lag_fiv
0.00019 ind_ctpp_fin_ult1_lag_one
0.00018 indext_lag_one
0.00018 ind_ctpp_fin_ult1_lag_fou
0.00017 ind_actividad_cliente_lag_fou
0.00017 ind_ctpp_fin_ult1_lag_fiv
0.00017 ind_ctpp_fin_ult1_lag_thr
0.00017 ind_valo_fin_ult1_lag_thr
0.00016 ind_valo_fin_ult1_lag_two
0.00015 ind_ctop_fin_ult1_lag_two
0.00015 sexo_lag_two
0.00015 tiprel_1mes_lag_fou
0.00015 ind_nuevo_lag_thr
0.00014 ind_ctop_fin_ult1_lag_one
0.00014 tiprel_1mes_lag_fiv
0.00013 conyuemp_lag_fiv
0.00012 ind_empleado_lag_fou
0.00012 ind_valo_fin_ult1_lag_fiv
0.00012 ind_plan_fin_ult1_lag_fiv
0.00012 sexo_lag_fiv
0.00011 ind_empleado_lag_thr
0.00011 ind_ctop_fin_ult1_lag_thr
0.00011 pais_residencia_lag_one
0.0001 ind_nuevo_lag_one
0.0001 ind_nuevo_lag_two
0.0001 ind_pres_fin_ult1_lag_fou
0.0001 ind_fond_fin_ult1_lag_two
9e-05 ind_nuevo_lag_fou
9e-05 ind_ctpp_fin_ult1_lag_two
9e-05 indresi_lag_fou
9e-05 ind_actividad_cliente_lag_two
9e-05 ind_hip_fin_ult1_lag_thr
9e-05 ind_viv_fin_ult1_lag_fou
8e-05 indext_lag_two
8e-05 ind_fond_fin_ult1_lag_thr
8e-05 ind_hip_fin_ult1_lag_two
8e-05 ind_plan_fin_ult1_lag_thr
8e-05 ind_ctma_fin_ult1_lag_fou
7e-05 ind_fond_fin_ult1_lag_fou
7e-05 ind_plan_fin_ult1_lag_fou
7e-05 ind_ctma_fin_ult1_lag_fiv
6e-05 ind_fond_fin_ult1_lag_fiv
6e-05 tiprel_1mes_lag_two
6e-05 ind_deme_fin_ult1_lag_one
6e-05 ind_deme_fin_ult1_lag_fou
6e-05 ult_fec_cli_1t_lag_thr
6e-05 ind_viv_fin_ult1_lag_one
5e-05 ind_hip_fin_ult1_lag_fou
5e-05 ind_plan_fin_ult1_lag_one
5e-05 ind_hip_fin_ult1_lag_one
5e-05 ind_fond_fin_ult1_lag_one
4e-05 indrel_lag_fiv
4e-05 ult_fec_cli_1t
4e-05 ind_viv_fin_ult1_lag_fiv
3e-05 ind_viv_fin_ult1_lag_thr
3e-05 ind_plan_fin_ult1_lag_two
3e-05 ind_cder_fin_ult1_lag_one
3e-05 indrel
3e-05 ind_empleado
3e-05 ind_viv_fin_ult1_lag_two
3e-05 pais_residencia
2e-05 ind_pres_fin_ult1_lag_thr
2e-05 ind_deme_fin_ult1_lag_thr
2e-05 indfall_lag_fou
2e-05 ind_cder_fin_ult1_lag_fou
2e-05 ind_pres_fin_ult1_lag_two
2e-05 ind_cder_fin_ult1_lag_thr
1e-05 ind_deme_fin_ult1_lag_two
1e-05 indfall
1e-05 indrel_lag_fou
1e-05 ind_cder_fin_ult1_lag_fiv
1e-05 indresi_lag_thr
1e-05 indresi
1e-05 ult_fec_cli_1t_lag_fou
1e-05 indresi_lag_two
1e-05 indrel_1mes_lag_two
0.0 indrel_1mes
0.0 ind_ahor_fin_ult1_lag_one
0.0 ind_empleado_lag_one
0.0 indrel_lag_one
0.0 indrel_1mes_lag_thr
0.0 ind_pres_fin_ult1_lag_one
0.0 indfall_lag_two
0.0 ind_aval_fin_ult1_lag_one
0.0 indfall_lag_fiv
0.0 ind_deme_fin_ult1_lag_fiv
0.0 conyuemp_lag_one
0.0 ind_ahor_fin_ult1_lag_two
0.0 ind_ahor_fin_ult1_lag_fou
0.0 ind_ctju_fin_ult1_lag_fou
0.0 ind_cder_fin_ult1_lag_two
0.0 ind_aval_fin_ult1_lag_fiv
0.0 indrel_1mes_lag_fou
0.0 conyuemp
0.0 ind_aval_fin_ult1_lag_fou
0.0 indrel_lag_thr
0.0 indrel_lag_two
0.0 indfall_lag_thr
0.0 conyuemp_lag_fou
0.0 ind_pres_fin_ult1_lag_fiv
0.0 ind_ahor_fin_ult1_lag_fiv
0.0 ind_deco_fin_ult1_lag_fiv
0.0 ind_ctju_fin_ult1_lag_fiv
0.0 indrel_1mes_lag_fiv
0.0 ind_nuevo_lag_fiv
0.0 indrel_1mes_lag_one
0.0 ind_aval_fin_ult1_lag_thr
0.0 ind_ahor_fin_ult1_lag_thr
0.0 indfall_lag_one
0.0 ind_deco_fin_ult1_lag_fou
0.0 ind_aval_fin_ult1_lag_two
In [24]:
# 주요 변수 시각화
plot_fimp(rf_fimp)
In [25]:
# 모델 상세 보기
et_fimp = observe_model_tree(trn, et_model)
==================================================
ExtraTreesClassifier(bootstrap=False, class_weight=None, criterion='gini',
max_depth=10, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=-1, oob_score=False, random_state=777,
verbose=0, warm_start=False)
==================================================
# Feature Importance
[ 5.94683527e-03 1.39051943e-03 2.29888618e-03 5.07432305e-04
3.87193509e-06 2.40474380e-03 8.72570150e-04 4.08645489e-05
6.83559602e-03 2.99270510e-04 0.00000000e+00 4.46397330e-05
3.27418070e-07 0.00000000e+00 3.83032823e-04 0.00000000e+00
5.90506420e-04 4.35783654e-03 4.53010078e-04 1.91290467e-03
4.52790009e-05 1.11181433e-02 8.84057974e-04 1.93381305e-03
4.37125676e-04 1.87721515e-04 7.63249072e-04 2.27509835e-02
9.65003318e-06 0.00000000e+00 8.29796439e-02 1.02106791e-05
1.26656593e-02 1.05263531e-03 3.63365079e-04 2.43360101e-04
1.78176511e-04 9.25012809e-04 7.15644145e-04 3.08925029e-05
1.69805679e-03 7.96031150e-05 1.66352789e-04 9.02045124e-05
3.97708172e-02 5.57928547e-02 4.21496401e-03 1.01873900e-04
7.05557292e-05 3.05297940e-03 8.66295221e-02 1.33354721e-02
1.13327551e-04 4.89673187e-05 2.76497031e-04 7.06924577e-06
0.00000000e+00 1.05123901e-05 2.38617541e-02 6.44182315e-04
1.56211092e-04 4.16962600e-04 1.10565233e-03 3.18128454e-03
1.09144814e-04 5.49184375e-04 2.79544474e-03 2.92380948e-03
1.89530078e-03 3.49917125e-04 1.20665891e-05 9.90510567e-04
1.59937333e-03 0.00000000e+00 5.50751343e-06 3.20254976e-02
4.42078304e-05 1.22853142e-02 1.81148951e-04 7.79964842e-03
3.34286484e-04 2.96086147e-04 2.07153088e-03 9.47022508e-04
3.32704948e-05 1.31446119e-03 1.33203270e-04 2.28632379e-04
7.75617457e-05 6.05736826e-02 3.63015790e-02 5.33921079e-04
1.05935941e-04 1.08677903e-05 1.67766781e-03 1.42805455e-02
6.15180269e-03 1.31639018e-04 6.57226628e-05 1.48221593e-04
0.00000000e+00 1.82646283e-05 6.06074697e-06 5.92231320e-04
5.22779113e-04 7.63872108e-04 2.80244491e-04 9.66878980e-04
2.73293859e-04 6.28633185e-04 1.33143909e-04 3.44422615e-03
1.44653519e-03 5.97602081e-04 4.51979104e-04 6.18386914e-03
1.57390987e-03 1.32559895e-04 1.08053942e-05 0.00000000e+00
1.51224828e-02 7.71709161e-06 1.22816551e-02 1.45439268e-04
5.04304903e-03 3.38664041e-04 3.43208888e-04 1.31516455e-03
9.31178721e-04 5.14782029e-05 7.45369027e-04 4.56742341e-03
1.26450613e-04 1.00504804e-04 9.99462315e-03 3.84530985e-02
3.81421014e-04 1.30235417e-04 3.29201075e-05 1.24650916e-03
1.42451180e-02 1.00043204e-02 2.34100961e-04 4.95725061e-05
2.12552349e-04 0.00000000e+00 3.01857822e-05 0.00000000e+00
8.32300718e-04 3.77531586e-04 6.08992402e-05 5.08128591e-04
5.88430350e-03 9.39081636e-04 3.25751965e-04 2.98181786e-04
1.37808804e-02 9.91268180e-04 1.35351212e-03 3.23399465e-04
6.44295893e-03 1.65739700e-03 8.20441976e-03 0.00000000e+00
0.00000000e+00 3.06309336e-02 8.25924023e-06 3.18134895e-03
8.67946778e-06 6.85203330e-04 3.73056050e-04 1.73695990e-04
4.32569685e-05 5.84665307e-04 5.29124787e-05 6.13953338e-04
1.01684199e-03 8.99434507e-05 1.28932273e-04 5.48788521e-02
1.45795158e-02 7.39060226e-05 5.11150381e-05 2.69028286e-05
4.16871749e-03 6.59239824e-03 4.01351956e-03 1.67177349e-04
1.98510367e-05 1.70674795e-04 8.37525322e-06 2.95497710e-05
0.00000000e+00 8.58729569e-05 4.68033344e-04 6.59809315e-05
4.24940726e-04 2.25743820e-03 2.24763234e-04 2.16985636e-04
1.79903849e-04 1.17617119e-03 2.11804317e-03 3.16675304e-04
8.56579745e-04 5.09347852e-04 1.53219712e-03 2.32602313e-04
0.00000000e+00 1.34513978e-05 1.38236627e-02 9.32559276e-06
8.65281211e-03 1.38911269e-05 6.46689807e-04 1.84414324e-04
1.54305300e-04 1.59900099e-05 3.74911111e-04 2.57333216e-05
1.03722303e-03 1.28685434e-03 6.21588944e-05 8.76462499e-05
3.59018353e-02 8.39748979e-03 0.00000000e+00 1.57041672e-04
6.41317887e-05 2.11620612e-03 1.26511837e-02 7.64334816e-03
1.82044811e-04 6.14368269e-06 1.29966498e-04 0.00000000e+00
3.49913145e-05 0.00000000e+00 1.94945951e-04 3.36763838e-04
2.79659833e-04 3.09219807e-04 7.55410961e-04 1.89659867e-04
4.85857252e-03 7.76329668e-04]
--------------------------------------------------
# Mapped to Column Name
0.00595 age
0.00139 antiguedad
0.0023 canal_entrada
0.00051 cod_prov
0.0 conyuemp
0.0024 fecha_alta
0.00087 ind_actividad_cliente
4e-05 ind_empleado
0.00684 ind_nuevo
0.0003 indext
0.0 indfall
4e-05 indrel
0.0 indrel_1mes
0.0 indresi
0.00038 nomprov
0.0 pais_residencia
0.00059 renta
0.00436 segmento
0.00045 sexo
0.00191 tiprel_1mes
5e-05 ult_fec_cli_1t
0.01112 age_lag_one
0.00088 antiguedad_lag_one
0.00193 canal_entrada_lag_one
0.00044 cod_prov_lag_one
0.00019 conyuemp_lag_one
0.00076 fecha_alta_lag_one
0.02275 ind_actividad_cliente_lag_one
1e-05 ind_ahor_fin_ult1_lag_one
0.0 ind_aval_fin_ult1_lag_one
0.08298 ind_cco_fin_ult1_lag_one
1e-05 ind_cder_fin_ult1_lag_one
0.01267 ind_cno_fin_ult1_lag_one
0.00105 ind_ctju_fin_ult1_lag_one
0.00036 ind_ctma_fin_ult1_lag_one
0.00024 ind_ctop_fin_ult1_lag_one
0.00018 ind_ctpp_fin_ult1_lag_one
0.00093 ind_deco_fin_ult1_lag_one
0.00072 ind_dela_fin_ult1_lag_one
3e-05 ind_deme_fin_ult1_lag_one
0.0017 ind_ecue_fin_ult1_lag_one
8e-05 ind_empleado_lag_one
0.00017 ind_fond_fin_ult1_lag_one
9e-05 ind_hip_fin_ult1_lag_one
0.03977 ind_nom_pens_ult1_lag_one
0.05579 ind_nomina_ult1_lag_one
0.00421 ind_nuevo_lag_one
0.0001 ind_plan_fin_ult1_lag_one
7e-05 ind_pres_fin_ult1_lag_one
0.00305 ind_reca_fin_ult1_lag_one
0.08663 ind_recibo_ult1_lag_one
0.01334 ind_tjcr_fin_ult1_lag_one
0.00011 ind_valo_fin_ult1_lag_one
5e-05 ind_viv_fin_ult1_lag_one
0.00028 indext_lag_one
1e-05 indfall_lag_one
0.0 indrel_lag_one
1e-05 indrel_1mes_lag_one
0.02386 indresi_lag_one
0.00064 nomprov_lag_one
0.00016 pais_residencia_lag_one
0.00042 renta_lag_one
0.00111 segmento_lag_one
0.00318 sexo_lag_one
0.00011 tiprel_1mes_lag_one
0.00055 ult_fec_cli_1t_lag_one
0.0028 age_lag_two
0.00292 antiguedad_lag_two
0.0019 canal_entrada_lag_two
0.00035 cod_prov_lag_two
1e-05 conyuemp_lag_two
0.00099 fecha_alta_lag_two
0.0016 ind_actividad_cliente_lag_two
0.0 ind_ahor_fin_ult1_lag_two
1e-05 ind_aval_fin_ult1_lag_two
0.03203 ind_cco_fin_ult1_lag_two
4e-05 ind_cder_fin_ult1_lag_two
0.01229 ind_cno_fin_ult1_lag_two
0.00018 ind_ctju_fin_ult1_lag_two
0.0078 ind_ctma_fin_ult1_lag_two
0.00033 ind_ctop_fin_ult1_lag_two
0.0003 ind_ctpp_fin_ult1_lag_two
0.00207 ind_deco_fin_ult1_lag_two
0.00095 ind_dela_fin_ult1_lag_two
3e-05 ind_deme_fin_ult1_lag_two
0.00131 ind_ecue_fin_ult1_lag_two
0.00013 ind_empleado_lag_two
0.00023 ind_fond_fin_ult1_lag_two
8e-05 ind_hip_fin_ult1_lag_two
0.06057 ind_nom_pens_ult1_lag_two
0.0363 ind_nomina_ult1_lag_two
0.00053 ind_nuevo_lag_two
0.00011 ind_plan_fin_ult1_lag_two
1e-05 ind_pres_fin_ult1_lag_two
0.00168 ind_reca_fin_ult1_lag_two
0.01428 ind_recibo_ult1_lag_two
0.00615 ind_tjcr_fin_ult1_lag_two
0.00013 ind_valo_fin_ult1_lag_two
7e-05 ind_viv_fin_ult1_lag_two
0.00015 indext_lag_two
0.0 indfall_lag_two
2e-05 indrel_lag_two
1e-05 indrel_1mes_lag_two
0.00059 indresi_lag_two
0.00052 nomprov_lag_two
0.00076 pais_residencia_lag_two
0.00028 renta_lag_two
0.00097 segmento_lag_two
0.00027 sexo_lag_two
0.00063 tiprel_1mes_lag_two
0.00013 ult_fec_cli_1t_lag_two
0.00344 age_lag_thr
0.00145 antiguedad_lag_thr
0.0006 canal_entrada_lag_thr
0.00045 cod_prov_lag_thr
0.00618 conyuemp_lag_thr
0.00157 fecha_alta_lag_thr
0.00013 ind_actividad_cliente_lag_thr
1e-05 ind_ahor_fin_ult1_lag_thr
0.0 ind_aval_fin_ult1_lag_thr
0.01512 ind_cco_fin_ult1_lag_thr
1e-05 ind_cder_fin_ult1_lag_thr
0.01228 ind_cno_fin_ult1_lag_thr
0.00015 ind_ctju_fin_ult1_lag_thr
0.00504 ind_ctma_fin_ult1_lag_thr
0.00034 ind_ctop_fin_ult1_lag_thr
0.00034 ind_ctpp_fin_ult1_lag_thr
0.00132 ind_deco_fin_ult1_lag_thr
0.00093 ind_dela_fin_ult1_lag_thr
5e-05 ind_deme_fin_ult1_lag_thr
0.00075 ind_ecue_fin_ult1_lag_thr
0.00457 ind_empleado_lag_thr
0.00013 ind_fond_fin_ult1_lag_thr
0.0001 ind_hip_fin_ult1_lag_thr
0.00999 ind_nom_pens_ult1_lag_thr
0.03845 ind_nomina_ult1_lag_thr
0.00038 ind_nuevo_lag_thr
0.00013 ind_plan_fin_ult1_lag_thr
3e-05 ind_pres_fin_ult1_lag_thr
0.00125 ind_reca_fin_ult1_lag_thr
0.01425 ind_recibo_ult1_lag_thr
0.01 ind_tjcr_fin_ult1_lag_thr
0.00023 ind_valo_fin_ult1_lag_thr
5e-05 ind_viv_fin_ult1_lag_thr
0.00021 indext_lag_thr
0.0 indfall_lag_thr
3e-05 indrel_lag_thr
0.0 indrel_1mes_lag_thr
0.00083 indresi_lag_thr
0.00038 nomprov_lag_thr
6e-05 pais_residencia_lag_thr
0.00051 renta_lag_thr
0.00588 segmento_lag_thr
0.00094 sexo_lag_thr
0.00033 tiprel_1mes_lag_thr
0.0003 ult_fec_cli_1t_lag_thr
0.01378 age_lag_fou
0.00099 antiguedad_lag_fou
0.00135 canal_entrada_lag_fou
0.00032 cod_prov_lag_fou
0.00644 conyuemp_lag_fou
0.00166 fecha_alta_lag_fou
0.0082 ind_actividad_cliente_lag_fou
0.0 ind_ahor_fin_ult1_lag_fou
0.0 ind_aval_fin_ult1_lag_fou
0.03063 ind_cco_fin_ult1_lag_fou
1e-05 ind_cder_fin_ult1_lag_fou
0.00318 ind_cno_fin_ult1_lag_fou
1e-05 ind_ctju_fin_ult1_lag_fou
0.00069 ind_ctma_fin_ult1_lag_fou
0.00037 ind_ctop_fin_ult1_lag_fou
0.00017 ind_ctpp_fin_ult1_lag_fou
4e-05 ind_deco_fin_ult1_lag_fou
0.00058 ind_dela_fin_ult1_lag_fou
5e-05 ind_deme_fin_ult1_lag_fou
0.00061 ind_ecue_fin_ult1_lag_fou
0.00102 ind_empleado_lag_fou
9e-05 ind_fond_fin_ult1_lag_fou
0.00013 ind_hip_fin_ult1_lag_fou
0.05488 ind_nom_pens_ult1_lag_fou
0.01458 ind_nomina_ult1_lag_fou
7e-05 ind_nuevo_lag_fou
5e-05 ind_plan_fin_ult1_lag_fou
3e-05 ind_pres_fin_ult1_lag_fou
0.00417 ind_reca_fin_ult1_lag_fou
0.00659 ind_recibo_ult1_lag_fou
0.00401 ind_tjcr_fin_ult1_lag_fou
0.00017 ind_valo_fin_ult1_lag_fou
2e-05 ind_viv_fin_ult1_lag_fou
0.00017 indext_lag_fou
1e-05 indfall_lag_fou
3e-05 indrel_lag_fou
0.0 indrel_1mes_lag_fou
9e-05 indresi_lag_fou
0.00047 nomprov_lag_fou
7e-05 pais_residencia_lag_fou
0.00042 renta_lag_fou
0.00226 segmento_lag_fou
0.00022 sexo_lag_fou
0.00022 tiprel_1mes_lag_fou
0.00018 ult_fec_cli_1t_lag_fou
0.00118 age_lag_fiv
0.00212 antiguedad_lag_fiv
0.00032 canal_entrada_lag_fiv
0.00086 cod_prov_lag_fiv
0.00051 conyuemp_lag_fiv
0.00153 fecha_alta_lag_fiv
0.00023 ind_actividad_cliente_lag_fiv
0.0 ind_ahor_fin_ult1_lag_fiv
1e-05 ind_aval_fin_ult1_lag_fiv
0.01382 ind_cco_fin_ult1_lag_fiv
1e-05 ind_cder_fin_ult1_lag_fiv
0.00865 ind_cno_fin_ult1_lag_fiv
1e-05 ind_ctju_fin_ult1_lag_fiv
0.00065 ind_ctma_fin_ult1_lag_fiv
0.00018 ind_ctop_fin_ult1_lag_fiv
0.00015 ind_ctpp_fin_ult1_lag_fiv
2e-05 ind_deco_fin_ult1_lag_fiv
0.00037 ind_dela_fin_ult1_lag_fiv
3e-05 ind_deme_fin_ult1_lag_fiv
0.00104 ind_ecue_fin_ult1_lag_fiv
0.00129 ind_empleado_lag_fiv
6e-05 ind_fond_fin_ult1_lag_fiv
9e-05 ind_hip_fin_ult1_lag_fiv
0.0359 ind_nom_pens_ult1_lag_fiv
0.0084 ind_nomina_ult1_lag_fiv
0.0 ind_nuevo_lag_fiv
0.00016 ind_plan_fin_ult1_lag_fiv
6e-05 ind_pres_fin_ult1_lag_fiv
0.00212 ind_reca_fin_ult1_lag_fiv
0.01265 ind_recibo_ult1_lag_fiv
0.00764 ind_tjcr_fin_ult1_lag_fiv
0.00018 ind_valo_fin_ult1_lag_fiv
1e-05 ind_viv_fin_ult1_lag_fiv
0.00013 indext_lag_fiv
0.0 indfall_lag_fiv
3e-05 indrel_lag_fiv
0.0 indrel_1mes_lag_fiv
0.00019 indresi_lag_fiv
0.00034 nomprov_lag_fiv
0.00028 pais_residencia_lag_fiv
0.00031 renta_lag_fiv
0.00076 segmento_lag_fiv
0.00019 sexo_lag_fiv
0.00486 tiprel_1mes_lag_fiv
0.00078 ult_fec_cli_1t_lag_fiv
--------------------------------------------------
# Sorted Feature Importance
0.08663 ind_recibo_ult1_lag_one
0.08298 ind_cco_fin_ult1_lag_one
0.06057 ind_nom_pens_ult1_lag_two
0.05579 ind_nomina_ult1_lag_one
0.05488 ind_nom_pens_ult1_lag_fou
0.03977 ind_nom_pens_ult1_lag_one
0.03845 ind_nomina_ult1_lag_thr
0.0363 ind_nomina_ult1_lag_two
0.0359 ind_nom_pens_ult1_lag_fiv
0.03203 ind_cco_fin_ult1_lag_two
0.03063 ind_cco_fin_ult1_lag_fou
0.02386 indresi_lag_one
0.02275 ind_actividad_cliente_lag_one
0.01512 ind_cco_fin_ult1_lag_thr
0.01458 ind_nomina_ult1_lag_fou
0.01428 ind_recibo_ult1_lag_two
0.01425 ind_recibo_ult1_lag_thr
0.01382 ind_cco_fin_ult1_lag_fiv
0.01378 age_lag_fou
0.01334 ind_tjcr_fin_ult1_lag_one
0.01267 ind_cno_fin_ult1_lag_one
0.01265 ind_recibo_ult1_lag_fiv
0.01229 ind_cno_fin_ult1_lag_two
0.01228 ind_cno_fin_ult1_lag_thr
0.01112 age_lag_one
0.01 ind_tjcr_fin_ult1_lag_thr
0.00999 ind_nom_pens_ult1_lag_thr
0.00865 ind_cno_fin_ult1_lag_fiv
0.0084 ind_nomina_ult1_lag_fiv
0.0082 ind_actividad_cliente_lag_fou
0.0078 ind_ctma_fin_ult1_lag_two
0.00764 ind_tjcr_fin_ult1_lag_fiv
0.00684 ind_nuevo
0.00659 ind_recibo_ult1_lag_fou
0.00644 conyuemp_lag_fou
0.00618 conyuemp_lag_thr
0.00615 ind_tjcr_fin_ult1_lag_two
0.00595 age
0.00588 segmento_lag_thr
0.00504 ind_ctma_fin_ult1_lag_thr
0.00486 tiprel_1mes_lag_fiv
0.00457 ind_empleado_lag_thr
0.00436 segmento
0.00421 ind_nuevo_lag_one
0.00417 ind_reca_fin_ult1_lag_fou
0.00401 ind_tjcr_fin_ult1_lag_fou
0.00344 age_lag_thr
0.00318 ind_cno_fin_ult1_lag_fou
0.00318 sexo_lag_one
0.00305 ind_reca_fin_ult1_lag_one
0.00292 antiguedad_lag_two
0.0028 age_lag_two
0.0024 fecha_alta
0.0023 canal_entrada
0.00226 segmento_lag_fou
0.00212 antiguedad_lag_fiv
0.00212 ind_reca_fin_ult1_lag_fiv
0.00207 ind_deco_fin_ult1_lag_two
0.00193 canal_entrada_lag_one
0.00191 tiprel_1mes
0.0019 canal_entrada_lag_two
0.0017 ind_ecue_fin_ult1_lag_one
0.00168 ind_reca_fin_ult1_lag_two
0.00166 fecha_alta_lag_fou
0.0016 ind_actividad_cliente_lag_two
0.00157 fecha_alta_lag_thr
0.00153 fecha_alta_lag_fiv
0.00145 antiguedad_lag_thr
0.00139 antiguedad
0.00135 canal_entrada_lag_fou
0.00132 ind_deco_fin_ult1_lag_thr
0.00131 ind_ecue_fin_ult1_lag_two
0.00129 ind_empleado_lag_fiv
0.00125 ind_reca_fin_ult1_lag_thr
0.00118 age_lag_fiv
0.00111 segmento_lag_one
0.00105 ind_ctju_fin_ult1_lag_one
0.00104 ind_ecue_fin_ult1_lag_fiv
0.00102 ind_empleado_lag_fou
0.00099 antiguedad_lag_fou
0.00099 fecha_alta_lag_two
0.00097 segmento_lag_two
0.00095 ind_dela_fin_ult1_lag_two
0.00094 sexo_lag_thr
0.00093 ind_dela_fin_ult1_lag_thr
0.00093 ind_deco_fin_ult1_lag_one
0.00088 antiguedad_lag_one
0.00087 ind_actividad_cliente
0.00086 cod_prov_lag_fiv
0.00083 indresi_lag_thr
0.00078 ult_fec_cli_1t_lag_fiv
0.00076 pais_residencia_lag_two
0.00076 fecha_alta_lag_one
0.00076 segmento_lag_fiv
0.00075 ind_ecue_fin_ult1_lag_thr
0.00072 ind_dela_fin_ult1_lag_one
0.00069 ind_ctma_fin_ult1_lag_fou
0.00065 ind_ctma_fin_ult1_lag_fiv
0.00064 nomprov_lag_one
0.00063 tiprel_1mes_lag_two
0.00061 ind_ecue_fin_ult1_lag_fou
0.0006 canal_entrada_lag_thr
0.00059 indresi_lag_two
0.00059 renta
0.00058 ind_dela_fin_ult1_lag_fou
0.00055 ult_fec_cli_1t_lag_one
0.00053 ind_nuevo_lag_two
0.00052 nomprov_lag_two
0.00051 conyuemp_lag_fiv
0.00051 renta_lag_thr
0.00051 cod_prov
0.00047 nomprov_lag_fou
0.00045 sexo
0.00045 cod_prov_lag_thr
0.00044 cod_prov_lag_one
0.00042 renta_lag_fou
0.00042 renta_lag_one
0.00038 nomprov
0.00038 ind_nuevo_lag_thr
0.00038 nomprov_lag_thr
0.00037 ind_dela_fin_ult1_lag_fiv
0.00037 ind_ctop_fin_ult1_lag_fou
0.00036 ind_ctma_fin_ult1_lag_one
0.00035 cod_prov_lag_two
0.00034 ind_ctpp_fin_ult1_lag_thr
0.00034 ind_ctop_fin_ult1_lag_thr
0.00034 nomprov_lag_fiv
0.00033 ind_ctop_fin_ult1_lag_two
0.00033 tiprel_1mes_lag_thr
0.00032 cod_prov_lag_fou
0.00032 canal_entrada_lag_fiv
0.00031 renta_lag_fiv
0.0003 indext
0.0003 ult_fec_cli_1t_lag_thr
0.0003 ind_ctpp_fin_ult1_lag_two
0.00028 renta_lag_two
0.00028 pais_residencia_lag_fiv
0.00028 indext_lag_one
0.00027 sexo_lag_two
0.00024 ind_ctop_fin_ult1_lag_one
0.00023 ind_valo_fin_ult1_lag_thr
0.00023 ind_actividad_cliente_lag_fiv
0.00023 ind_fond_fin_ult1_lag_two
0.00022 sexo_lag_fou
0.00022 tiprel_1mes_lag_fou
0.00021 indext_lag_thr
0.00019 indresi_lag_fiv
0.00019 sexo_lag_fiv
0.00019 conyuemp_lag_one
0.00018 ind_ctop_fin_ult1_lag_fiv
0.00018 ind_valo_fin_ult1_lag_fiv
0.00018 ind_ctju_fin_ult1_lag_two
0.00018 ult_fec_cli_1t_lag_fou
0.00018 ind_ctpp_fin_ult1_lag_one
0.00017 ind_ctpp_fin_ult1_lag_fou
0.00017 indext_lag_fou
0.00017 ind_valo_fin_ult1_lag_fou
0.00017 ind_fond_fin_ult1_lag_one
0.00016 ind_plan_fin_ult1_lag_fiv
0.00016 pais_residencia_lag_one
0.00015 ind_ctpp_fin_ult1_lag_fiv
0.00015 indext_lag_two
0.00015 ind_ctju_fin_ult1_lag_thr
0.00013 ind_empleado_lag_two
0.00013 ult_fec_cli_1t_lag_two
0.00013 ind_actividad_cliente_lag_thr
0.00013 ind_valo_fin_ult1_lag_two
0.00013 ind_plan_fin_ult1_lag_thr
0.00013 indext_lag_fiv
0.00013 ind_hip_fin_ult1_lag_fou
0.00013 ind_fond_fin_ult1_lag_thr
0.00011 ind_valo_fin_ult1_lag_one
0.00011 tiprel_1mes_lag_one
0.00011 ind_plan_fin_ult1_lag_two
0.0001 ind_plan_fin_ult1_lag_one
0.0001 ind_hip_fin_ult1_lag_thr
9e-05 ind_hip_fin_ult1_lag_one
9e-05 ind_fond_fin_ult1_lag_fou
9e-05 ind_hip_fin_ult1_lag_fiv
9e-05 indresi_lag_fou
8e-05 ind_empleado_lag_one
8e-05 ind_hip_fin_ult1_lag_two
7e-05 ind_nuevo_lag_fou
7e-05 ind_pres_fin_ult1_lag_one
7e-05 pais_residencia_lag_fou
7e-05 ind_viv_fin_ult1_lag_two
6e-05 ind_pres_fin_ult1_lag_fiv
6e-05 ind_fond_fin_ult1_lag_fiv
6e-05 pais_residencia_lag_thr
5e-05 ind_deme_fin_ult1_lag_fou
5e-05 ind_deme_fin_ult1_lag_thr
5e-05 ind_plan_fin_ult1_lag_fou
5e-05 ind_viv_fin_ult1_lag_thr
5e-05 ind_viv_fin_ult1_lag_one
5e-05 ult_fec_cli_1t
4e-05 indrel
4e-05 ind_cder_fin_ult1_lag_two
4e-05 ind_deco_fin_ult1_lag_fou
4e-05 ind_empleado
3e-05 indrel_lag_fiv
3e-05 ind_deme_fin_ult1_lag_two
3e-05 ind_pres_fin_ult1_lag_thr
3e-05 ind_deme_fin_ult1_lag_one
3e-05 indrel_lag_thr
3e-05 indrel_lag_fou
3e-05 ind_pres_fin_ult1_lag_fou
3e-05 ind_deme_fin_ult1_lag_fiv
2e-05 ind_viv_fin_ult1_lag_fou
2e-05 indrel_lag_two
2e-05 ind_deco_fin_ult1_lag_fiv
1e-05 ind_ctju_fin_ult1_lag_fiv
1e-05 ind_aval_fin_ult1_lag_fiv
1e-05 conyuemp_lag_two
1e-05 ind_pres_fin_ult1_lag_two
1e-05 ind_ahor_fin_ult1_lag_thr
1e-05 indrel_1mes_lag_one
1e-05 ind_cder_fin_ult1_lag_one
1e-05 ind_ahor_fin_ult1_lag_one
1e-05 ind_cder_fin_ult1_lag_fiv
1e-05 ind_ctju_fin_ult1_lag_fou
1e-05 indfall_lag_fou
1e-05 ind_cder_fin_ult1_lag_fou
1e-05 ind_cder_fin_ult1_lag_thr
1e-05 indfall_lag_one
1e-05 ind_viv_fin_ult1_lag_fiv
1e-05 indrel_1mes_lag_two
1e-05 ind_aval_fin_ult1_lag_two
0.0 conyuemp
0.0 indrel_1mes
0.0 indrel_lag_one
0.0 indrel_1mes_lag_thr
0.0 indfall_lag_two
0.0 ind_aval_fin_ult1_lag_one
0.0 indfall_lag_fiv
0.0 indresi
0.0 ind_ahor_fin_ult1_lag_two
0.0 ind_ahor_fin_ult1_lag_fou
0.0 indrel_1mes_lag_fou
0.0 ind_aval_fin_ult1_lag_fou
0.0 indfall
0.0 indfall_lag_thr
0.0 ind_ahor_fin_ult1_lag_fiv
0.0 indrel_1mes_lag_fiv
0.0 ind_nuevo_lag_fiv
0.0 ind_aval_fin_ult1_lag_thr
0.0 pais_residencia
In [26]:
# 주요 변수 시각화
plot_fimp(et_fimp)
In [ ]:
# 입력 : trn, target, tst
# 출력 : new trn, new tst, same target
In [17]:
trn.head()
Out[17]:
age
antiguedad
canal_entrada
cod_prov
conyuemp
fecha_alta
ind_actividad_cliente
ind_empleado
ind_nuevo
indext
...
indrel_lag_fiv
indrel_1mes_lag_fiv
indresi_lag_fiv
nomprov_lag_fiv
pais_residencia_lag_fiv
renta_lag_fiv
segmento_lag_fiv
sexo_lag_fiv
tiprel_1mes_lag_fiv
ult_fec_cli_1t_lag_fiv
0
28
34
150
20
2
1012
1
3
0
0
...
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1
28
34
150
20
2
1012
1
3
0
0
...
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2
37
34
122
20
2
1012
1
3
0
0
...
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-153.0
3
37
34
122
20
2
1012
1
3
0
0
...
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-153.0
4
40
34
122
20
2
1012
1
3
0
0
...
0.0
0.0
1.0
30.0
36.0
93847.0
1.0
0.0
0.0
-153.0
5 rows × 246 columns
In [18]:
trn["age"] = (trn["age"]/10).astype(int)
In [21]:
print(trn.columns)
Index(['age', 'antiguedad', 'canal_entrada', 'cod_prov', 'conyuemp',
'fecha_alta', 'ind_actividad_cliente', 'ind_empleado', 'ind_nuevo',
'indext',
...
'indrel_lag_fiv', 'indrel_1mes_lag_fiv', 'indresi_lag_fiv',
'nomprov_lag_fiv', 'pais_residencia_lag_fiv', 'renta_lag_fiv',
'segmento_lag_fiv', 'sexo_lag_fiv', 'tiprel_1mes_lag_fiv',
'ult_fec_cli_1t_lag_fiv'],
dtype='object', length=246)
In [22]:
pd.set_option('display.max_columns', 500)
In [29]:
trn.head()
Out[29]:
age
antiguedad
canal_entrada
cod_prov
conyuemp
fecha_alta
ind_actividad_cliente
ind_empleado
ind_nuevo
indext
indfall
indrel
indrel_1mes
indresi
nomprov
pais_residencia
renta
segmento
sexo
tiprel_1mes
ult_fec_cli_1t
age_lag_one
antiguedad_lag_one
canal_entrada_lag_one
cod_prov_lag_one
conyuemp_lag_one
fecha_alta_lag_one
ind_actividad_cliente_lag_one
ind_ahor_fin_ult1_lag_one
ind_aval_fin_ult1_lag_one
ind_cco_fin_ult1_lag_one
ind_cder_fin_ult1_lag_one
ind_cno_fin_ult1_lag_one
ind_ctju_fin_ult1_lag_one
ind_ctma_fin_ult1_lag_one
ind_ctop_fin_ult1_lag_one
ind_ctpp_fin_ult1_lag_one
ind_deco_fin_ult1_lag_one
ind_dela_fin_ult1_lag_one
ind_deme_fin_ult1_lag_one
ind_ecue_fin_ult1_lag_one
ind_empleado_lag_one
ind_fond_fin_ult1_lag_one
ind_hip_fin_ult1_lag_one
ind_nom_pens_ult1_lag_one
ind_nomina_ult1_lag_one
ind_nuevo_lag_one
ind_plan_fin_ult1_lag_one
ind_pres_fin_ult1_lag_one
ind_reca_fin_ult1_lag_one
ind_recibo_ult1_lag_one
ind_tjcr_fin_ult1_lag_one
ind_valo_fin_ult1_lag_one
ind_viv_fin_ult1_lag_one
indext_lag_one
indfall_lag_one
indrel_lag_one
indrel_1mes_lag_one
indresi_lag_one
nomprov_lag_one
pais_residencia_lag_one
renta_lag_one
segmento_lag_one
sexo_lag_one
tiprel_1mes_lag_one
ult_fec_cli_1t_lag_one
age_lag_two
antiguedad_lag_two
canal_entrada_lag_two
cod_prov_lag_two
conyuemp_lag_two
fecha_alta_lag_two
ind_actividad_cliente_lag_two
ind_ahor_fin_ult1_lag_two
ind_aval_fin_ult1_lag_two
ind_cco_fin_ult1_lag_two
ind_cder_fin_ult1_lag_two
ind_cno_fin_ult1_lag_two
ind_ctju_fin_ult1_lag_two
ind_ctma_fin_ult1_lag_two
ind_ctop_fin_ult1_lag_two
ind_ctpp_fin_ult1_lag_two
ind_deco_fin_ult1_lag_two
ind_dela_fin_ult1_lag_two
ind_deme_fin_ult1_lag_two
ind_ecue_fin_ult1_lag_two
ind_empleado_lag_two
ind_fond_fin_ult1_lag_two
ind_hip_fin_ult1_lag_two
ind_nom_pens_ult1_lag_two
ind_nomina_ult1_lag_two
ind_nuevo_lag_two
ind_plan_fin_ult1_lag_two
ind_pres_fin_ult1_lag_two
ind_reca_fin_ult1_lag_two
ind_recibo_ult1_lag_two
ind_tjcr_fin_ult1_lag_two
ind_valo_fin_ult1_lag_two
ind_viv_fin_ult1_lag_two
indext_lag_two
indfall_lag_two
indrel_lag_two
indrel_1mes_lag_two
indresi_lag_two
nomprov_lag_two
pais_residencia_lag_two
renta_lag_two
segmento_lag_two
sexo_lag_two
tiprel_1mes_lag_two
ult_fec_cli_1t_lag_two
age_lag_thr
antiguedad_lag_thr
canal_entrada_lag_thr
cod_prov_lag_thr
conyuemp_lag_thr
fecha_alta_lag_thr
ind_actividad_cliente_lag_thr
ind_ahor_fin_ult1_lag_thr
ind_aval_fin_ult1_lag_thr
ind_cco_fin_ult1_lag_thr
ind_cder_fin_ult1_lag_thr
ind_cno_fin_ult1_lag_thr
ind_ctju_fin_ult1_lag_thr
ind_ctma_fin_ult1_lag_thr
ind_ctop_fin_ult1_lag_thr
ind_ctpp_fin_ult1_lag_thr
ind_deco_fin_ult1_lag_thr
ind_dela_fin_ult1_lag_thr
ind_deme_fin_ult1_lag_thr
ind_ecue_fin_ult1_lag_thr
ind_empleado_lag_thr
ind_fond_fin_ult1_lag_thr
ind_hip_fin_ult1_lag_thr
ind_nom_pens_ult1_lag_thr
ind_nomina_ult1_lag_thr
ind_nuevo_lag_thr
ind_plan_fin_ult1_lag_thr
ind_pres_fin_ult1_lag_thr
ind_reca_fin_ult1_lag_thr
ind_recibo_ult1_lag_thr
ind_tjcr_fin_ult1_lag_thr
ind_valo_fin_ult1_lag_thr
ind_viv_fin_ult1_lag_thr
indext_lag_thr
indfall_lag_thr
indrel_lag_thr
indrel_1mes_lag_thr
indresi_lag_thr
nomprov_lag_thr
pais_residencia_lag_thr
renta_lag_thr
segmento_lag_thr
sexo_lag_thr
tiprel_1mes_lag_thr
ult_fec_cli_1t_lag_thr
age_lag_fou
antiguedad_lag_fou
canal_entrada_lag_fou
cod_prov_lag_fou
conyuemp_lag_fou
fecha_alta_lag_fou
ind_actividad_cliente_lag_fou
ind_ahor_fin_ult1_lag_fou
ind_aval_fin_ult1_lag_fou
ind_cco_fin_ult1_lag_fou
ind_cder_fin_ult1_lag_fou
ind_cno_fin_ult1_lag_fou
ind_ctju_fin_ult1_lag_fou
ind_ctma_fin_ult1_lag_fou
ind_ctop_fin_ult1_lag_fou
ind_ctpp_fin_ult1_lag_fou
ind_deco_fin_ult1_lag_fou
ind_dela_fin_ult1_lag_fou
ind_deme_fin_ult1_lag_fou
ind_ecue_fin_ult1_lag_fou
ind_empleado_lag_fou
ind_fond_fin_ult1_lag_fou
ind_hip_fin_ult1_lag_fou
ind_nom_pens_ult1_lag_fou
ind_nomina_ult1_lag_fou
ind_nuevo_lag_fou
ind_plan_fin_ult1_lag_fou
ind_pres_fin_ult1_lag_fou
ind_reca_fin_ult1_lag_fou
ind_recibo_ult1_lag_fou
ind_tjcr_fin_ult1_lag_fou
ind_valo_fin_ult1_lag_fou
ind_viv_fin_ult1_lag_fou
indext_lag_fou
indfall_lag_fou
indrel_lag_fou
indrel_1mes_lag_fou
indresi_lag_fou
nomprov_lag_fou
pais_residencia_lag_fou
renta_lag_fou
segmento_lag_fou
sexo_lag_fou
tiprel_1mes_lag_fou
ult_fec_cli_1t_lag_fou
age_lag_fiv
antiguedad_lag_fiv
canal_entrada_lag_fiv
cod_prov_lag_fiv
conyuemp_lag_fiv
fecha_alta_lag_fiv
ind_actividad_cliente_lag_fiv
ind_ahor_fin_ult1_lag_fiv
ind_aval_fin_ult1_lag_fiv
ind_cco_fin_ult1_lag_fiv
ind_cder_fin_ult1_lag_fiv
ind_cno_fin_ult1_lag_fiv
ind_ctju_fin_ult1_lag_fiv
ind_ctma_fin_ult1_lag_fiv
ind_ctop_fin_ult1_lag_fiv
ind_ctpp_fin_ult1_lag_fiv
ind_deco_fin_ult1_lag_fiv
ind_dela_fin_ult1_lag_fiv
ind_deme_fin_ult1_lag_fiv
ind_ecue_fin_ult1_lag_fiv
ind_empleado_lag_fiv
ind_fond_fin_ult1_lag_fiv
ind_hip_fin_ult1_lag_fiv
ind_nom_pens_ult1_lag_fiv
ind_nomina_ult1_lag_fiv
ind_nuevo_lag_fiv
ind_plan_fin_ult1_lag_fiv
ind_pres_fin_ult1_lag_fiv
ind_reca_fin_ult1_lag_fiv
ind_recibo_ult1_lag_fiv
ind_tjcr_fin_ult1_lag_fiv
ind_valo_fin_ult1_lag_fiv
ind_viv_fin_ult1_lag_fiv
indext_lag_fiv
indfall_lag_fiv
indrel_lag_fiv
indrel_1mes_lag_fiv
indresi_lag_fiv
nomprov_lag_fiv
pais_residencia_lag_fiv
renta_lag_fiv
segmento_lag_fiv
sexo_lag_fiv
tiprel_1mes_lag_fiv
ult_fec_cli_1t_lag_fiv
0
2
34
150
20
2
1012
1
3
0
0
0
0
0
1
30
36
189517
2
1
1
-2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1
2
34
150
20
2
1012
1
3
0
0
0
0
0
1
30
36
189517
2
1
1
-2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2
3
34
122
20
2
1012
1
3
0
0
0
0
0
1
30
36
107894
1
1
0
-2
37.0
34.0
122.0
20.0
2.0
981.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-33.0
37.0
34.0
122.0
20.0
2.0
951.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-63.0
37.0
34.0
122.0
20.0
2.0
920.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-94.0
37.0
34.0
122.0
20.0
2.0
892.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-122.0
37.0
34.0
122.0
20.0
2.0
861.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-153.0
3
3
34
122
20
2
1012
1
3
0
0
0
0
0
1
30
36
107894
1
1
0
-2
37.0
34.0
122.0
20.0
2.0
981.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-33.0
37.0
34.0
122.0
20.0
2.0
951.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-63.0
37.0
34.0
122.0
20.0
2.0
920.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-94.0
37.0
34.0
122.0
20.0
2.0
892.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-122.0
37.0
34.0
122.0
20.0
2.0
861.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
3.0
0.0
0.0
1.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-153.0
4
4
34
122
20
2
1012
1
3
0
0
0
0
0
1
30
36
93847
1
0
0
-2
40.0
34.0
122.0
20.0
2.0
981.0
1.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
93847.0
1.0
0.0
0.0
-33.0
40.0
34.0
122.0
20.0
2.0
951.0
1.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
93847.0
1.0
0.0
0.0
-63.0
40.0
34.0
122.0
20.0
2.0
920.0
1.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
93847.0
1.0
0.0
0.0
-94.0
40.0
34.0
122.0
20.0
2.0
892.0
1.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
93847.0
1.0
0.0
0.0
-122.0
40.0
34.0
122.0
20.0
2.0
861.0
1.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
30.0
36.0
93847.0
1.0
0.0
0.0
-153.0
In [30]:
trn = trn.drop(['sexo_lag_one', 'sexo_lag_two','sexo_lag_thr', 'sexo_lag_fou', 'sexo_lag_fiv'], 1)
In [34]:
len(np.unique((trn.columns)))
Out[34]:
241
In [35]:
trn = trn.drop(['age_lag_one', 'age_lag_two','age_lag_thr', 'age_lag_fou', 'age_lag_fiv'], 1)
In [36]:
len(np.unique((trn.columns)))
Out[36]:
236
In [ ]:
# trn.head() #cod_prov, fecha, alta, in_empleado, ind_nuevo, indext, indfall,
trn = trn.drop(['cod_prov_lag_one', 'cod_prov_lag_two','cod_prov_lag_thr', 'cod_prov_lag_fou', 'cod_prov_lag_fiv'], 1)
trn = trn.drop(['fecha_alta_lag_one', 'fecha_alta_lag_two','fecha_alta_lag_thr', 'fecha_alta_lag_fou', 'fecha_alta_lag_fiv'], 1)
trn = trn.drop(['ind_empleado_lag_one', 'ind_empleado_lag_two','ind_empleado_lag_thr', 'ind_empleado_lag_fou', 'ind_empleado_lag_fiv'], 1)
trn = trn.drop(['ind_nuevo_lag_one', 'ind_nuevo_lag_two','ind_nuevo_lag_thr', 'ind_nuevo_lag_fou', 'ind_nuevo_lag_fiv'], 1)
trn = trn.drop(['indext_lag_one', 'indext_lag_two','indext_lag_thr', 'indext_lag_fou', 'indext_lag_fiv'], 1)
trn = trn.drop(['indfall_lag_one', 'indfall_lag_two','indfall_lag_thr', 'indfall_lag_fou', 'indfall_lag_fiv'], 1)
In [58]:
# tst.head() #cod_prov, fecha, alta, in_empleado, ind_nuevo, indext, indfall,
tst = tst.drop(['sexo_lag_one', 'sexo_lag_two','sexo_lag_thr', 'sexo_lag_fou', 'sexo_lag_fiv'], 1)
tst = tst.drop(['age_lag_one', 'age_lag_two','age_lag_thr', 'age_lag_fou', 'age_lag_fiv'], 1)
tst = tst.drop(['cod_prov_lag_one', 'cod_prov_lag_two','cod_prov_lag_thr', 'cod_prov_lag_fou', 'cod_prov_lag_fiv'], 1)
tst = tst.drop(['fecha_alta_lag_one', 'fecha_alta_lag_two','fecha_alta_lag_thr', 'fecha_alta_lag_fou', 'fecha_alta_lag_fiv'], 1)
tst = tst.drop(['ind_empleado_lag_one', 'ind_empleado_lag_two','ind_empleado_lag_thr', 'ind_empleado_lag_fou', 'ind_empleado_lag_fiv'], 1)
tst = tst.drop(['ind_nuevo_lag_one', 'ind_nuevo_lag_two','ind_nuevo_lag_thr', 'ind_nuevo_lag_fou', 'ind_nuevo_lag_fiv'], 1)
tst = tst.drop(['indext_lag_one', 'indext_lag_two','indext_lag_thr', 'indext_lag_fou', 'indext_lag_fiv'], 1)
tst = tst.drop(['indfall_lag_one', 'indfall_lag_two','indfall_lag_thr', 'indfall_lag_fou', 'indfall_lag_fiv'], 1)
In [ ]:
trn = trn.drop(['fecha_alta_lag_one', 'fecha_alta_lag_two','fecha_alta_lag_thr', 'fecha_alta_lag_fou', 'fecha_alta_lag_fiv'], 1)
In [ ]:
trn = trn.drop(['ind_empleado_lag_one', 'ind_empleado_lag_two','ind_empleado_lag_thr', 'ind_empleado_lag_fou', 'ind_empleado_lag_fiv'], 1)
In [ ]:
trn = trn.drop(['ind_nuevo_lag_one', 'ind_nuevo_lag_two','ind_nuevo_lag_thr', 'ind_nuevo_lag_fou', 'ind_nuevo_lag_fiv'], 1)
In [ ]:
trn = trn.drop(['indext_lag_one', 'indext_lag_two','indext_lag_thr', 'indext_lag_fou', 'indext_lag_fiv'], 1)
In [ ]:
trn = trn.drop(['indfall_lag_one', 'indfall_lag_two','indfall_lag_thr', 'indfall_lag_fou', 'indfall_lag_fiv'], 1)
In [49]:
len(np.unique((trn.columns)))
Out[49]:
206
In [71]:
cols = ['ind_ahor_fin_ult1', 'ind_aval_fin_ult1', 'ind_cco_fin_ult1',
'ind_cder_fin_ult1', 'ind_cno_fin_ult1', 'ind_ctju_fin_ult1',
'ind_ctma_fin_ult1', 'ind_ctop_fin_ult1', 'ind_ctpp_fin_ult1',
'ind_deco_fin_ult1', 'ind_deme_fin_ult1', 'ind_dela_fin_ult1',
'ind_ecue_fin_ult1', 'ind_fond_fin_ult1', 'ind_hip_fin_ult1',
'ind_plan_fin_ult1', 'ind_pres_fin_ult1', 'ind_reca_fin_ult1',
'ind_tjcr_fin_ult1', 'ind_valo_fin_ult1', 'ind_viv_fin_ult1',
'ind_nomina_ult1', 'ind_nom_pens_ult1', 'ind_recibo_ult1']
print(trn.shape, tst.shape)
# 타겟별 누적 합
lags = ['_lag_one','_lag_two','_lag_thr','_lag_fou','_lag_fiv']
for col in cols:
trn[col+'_sum'] = trn[[col+lag for lag in lags]].sum(axis=1)
tst[col+'_sum'] = tst[[col+lag for lag in lags]].sum(axis=1)
# 월별 누적 합
for lag in lags:
trn['sum'+lag] = trn[[col+lag for col in cols]].sum(axis=1)
tst['sum'+lag] = tst[[col+lag for col in cols]].sum(axis=1)
print(trn.shape, tst.shape)
(45595, 206) (929615, 206)
(45595, 235) (929615, 235)
In [ ]:
In [ ]:
In [ ]:
# 입력 : none
# 출력: model instance
In [74]:
for i in range(3, 13):
print("i의 값은 " + str(i))
st = time.time()
rf_model = RandomForestClassifier(max_depth=i, n_jobs=-1, random_state=777)
fit_and_eval(trn, target, rf_model)
print("*" * 20)
i의 값은 3
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.6917640820393318
# Raw : [1.6873325878812817, 1.6760543222457542, 1.7119053359909591]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.6930915826137196
# Raw : [1.6871435665894301, 1.679384087159957, 1.7127470940917713]
==================================================
3 secs
********************
i의 값은 4
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.607264861981496
# Raw : [1.5990760373060697, 1.6039240507226946, 1.6187944979157243]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.6116065565306528
# Raw : [1.6012177729511254, 1.6096298032679304, 1.6239720933729023]
==================================================
2 secs
********************
i의 값은 5
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.4598439411306032
# Raw : [1.4818101715680239, 1.4415990173945326, 1.4561226344292537]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.4691840003529801
# Raw : [1.4860200084827035, 1.451500826298241, 1.4700311662779963]
==================================================
3 secs
********************
i의 값은 6
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.3672655894088352
# Raw : [1.3550333263478045, 1.3805048442669128, 1.3662585976117885]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.383793796138132
# Raw : [1.3714761160440958, 1.3986455395006263, 1.3812597328696736]
==================================================
3 secs
********************
i의 값은 7
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2973388729307247
# Raw : [1.2904399241330868, 1.2926939961562194, 1.3088826985028679]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.3232882705155689
# Raw : [1.3165972703157922, 1.3205823395917586, 1.3326852016391557]
==================================================
3 secs
********************
i의 값은 8
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.230295234926633
# Raw : [1.2241754971627086, 1.2221933238977483, 1.2445168837194425]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2779515538819621
# Raw : [1.2687681858803603, 1.2712548421180669, 1.2938316336474587]
==================================================
3 secs
********************
i의 값은 9
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.1702237472111416
# Raw : [1.1686054019891523, 1.1718969317894392, 1.1701689078548339]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2470973617527712
# Raw : [1.2352856305514412, 1.2577189919903666, 1.2482874627165055]
==================================================
3 secs
********************
i의 값은 10
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.117607584327823
# Raw : [1.1263938879972701, 1.1169023060065728, 1.1095265589796262]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.230658053293503
# Raw : [1.2336084341896874, 1.236927010419268, 1.2214387152715538]
==================================================
3 secs
********************
i의 값은 11
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.0606618580115434
# Raw : [1.0673124400655407, 1.0680346205484934, 1.0466385134205967]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2337135440545453
# Raw : [1.220225966037223, 1.2650399784737429, 1.2158746876526698]
==================================================
3 secs
********************
i의 값은 12
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.0007647753086395
# Raw : [0.99251880370967727, 1.0077843638094812, 1.0019911584067605]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2220616883875692
# Raw : [1.2052702442573726, 1.2385375272864223, 1.2223772936189128]
==================================================
3 secs
********************
In [55]:
for i in range(3, 15):
print("i의 값은 " + str(i))
st = time.time()
rf_model = RandomForestClassifier(max_depth=9, n_estimators=i, n_jobs=-1, random_state=777)
fit_and_eval(trn, target, rf_model)
print("*" * 20)
i의 값은 3
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.3113241391287322
# Raw : [1.2766681687173667, 1.3272264616138534, 1.3300777870549769]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.4155216099688375
# Raw : [1.3691344894255446, 1.4471506442328705, 1.4302796962480979]
==================================================
2 secs
********************
i의 값은 4
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2838478632670112
# Raw : [1.2578444140391261, 1.3057244105246346, 1.2879747652372733]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.3708457752250516
# Raw : [1.3305282955162128, 1.4117094839183635, 1.3702995462405787]
==================================================
2 secs
********************
i의 값은 5
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2763589870052476
# Raw : [1.245478719292672, 1.3127448842453837, 1.2708533574776875]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.352926859290949
# Raw : [1.3138329847089349, 1.3995870792163505, 1.3453605139475617]
==================================================
2 secs
********************
i의 값은 6
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2757741792335626
# Raw : [1.2514110441048278, 1.3031143699100025, 1.2727971236858577]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.3468267412069233
# Raw : [1.3140254919757857, 1.3815877668850893, 1.344866964759895]
==================================================
2 secs
********************
i의 값은 7
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2647931305520494
# Raw : [1.2464972255174758, 1.2933711976260582, 1.2545109685126148]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.3360046155874112
# Raw : [1.3108226357037192, 1.3674156567921769, 1.3297755542663379]
==================================================
2 secs
********************
i의 값은 8
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2522440223097047
# Raw : [1.2282452892828892, 1.2754027499400431, 1.2530840277061819]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.3227878637008508
# Raw : [1.2935875759795354, 1.3539245806388009, 1.3208514344842159]
==================================================
3 secs
********************
i의 값은 9
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.244790074667987
# Raw : [1.2219386662665062, 1.2630027474135781, 1.2494288103238769]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.3130669555550742
# Raw : [1.2808752969646535, 1.3414627960264083, 1.3168627736741607]
==================================================
3 secs
********************
i의 값은 10
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2379894961043505
# Raw : [1.2197392363190847, 1.2501645846487242, 1.2440646673452431]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.3075112329145573
# Raw : [1.2806154182584841, 1.328716847715194, 1.3132014327699939]
==================================================
3 secs
********************
i의 값은 11
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.237236987710796
# Raw : [1.222659067141636, 1.2438353254665768, 1.2452165705241753]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.3065624168413443
# Raw : [1.2840539685192327, 1.3213814547685876, 1.3142518272362127]
==================================================
3 secs
********************
i의 값은 12
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2370022844575093
# Raw : [1.2211253876687824, 1.2408081982271832, 1.2490732674765621]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.3061039424552225
# Raw : [1.2835349672727667, 1.3188901690164181, 1.3158866910764833]
==================================================
3 secs
********************
i의 값은 13
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2343620860718711
# Raw : [1.2209561933708775, 1.2400689778805687, 1.2420610869641673]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.3005657863858877
# Raw : [1.282326379047807, 1.311123471483117, 1.3082475086267393]
==================================================
3 secs
********************
i의 값은 14
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2325767418519622
# Raw : [1.2187288166957797, 1.2415342570257937, 1.2374671518343132]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2992265339759328
# Raw : [1.2803575368934215, 1.313092085419012, 1.3042299796153649]
==================================================
3 secs
********************
In [56]:
for i in range(0, 8):
print("i의 값은 " + str(i))
st = time.time()
rf_model = RandomForestClassifier(max_depth=9, n_estimators=14, verbose = i, n_jobs=-1, random_state=777)
fit_and_eval(trn, target, rf_model)
print("*" * 20)
i의 값은 0
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2325767418519622
# Raw : [1.2187288166957797, 1.2415342570257937, 1.2374671518343132]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2992265339759328
# Raw : [1.2803575368934215, 1.313092085419012, 1.3042299796153649]
==================================================
3 secs
********************
i의 값은 1
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.3s finished
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2325767418519622
# Raw : [1.2187288166957797, 1.2415342570257937, 1.2374671518343132]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2992265339759328
# Raw : [1.2803575368934215, 1.313092085419012, 1.3042299796153649]
==================================================
3 secs
********************
i의 값은 2
building tree 1 of 14
building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2325767418519622
# Raw : [1.2187288166957797, 1.2415342570257937, 1.2374671518343132]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2992265339759328
# Raw : [1.2803575368934215, 1.313092085419012, 1.3042299796153649]
==================================================
3 secs
********************
i의 값은 3
building tree 1 of 14
building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 12 out of 14 | elapsed: 0.3s remaining: 0.0s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 12 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 12 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 12 out of 14 | elapsed: 0.3s remaining: 0.0s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 12 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 12 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 12 out of 14 | elapsed: 0.3s remaining: 0.0s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 12 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 12 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2325767418519622
# Raw : [1.2187288166957797, 1.2415342570257937, 1.2374671518343132]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2992265339759328
# Raw : [1.2803575368934215, 1.313092085419012, 1.3042299796153649]
==================================================
3 secs
********************
i의 값은 4
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 11 out of 14 | elapsed: 0.3s remaining: 0.0s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 11 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 11 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 11 out of 14 | elapsed: 0.3s remaining: 0.0s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 11 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 11 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 11 out of 14 | elapsed: 0.3s remaining: 0.0s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 11 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 11 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2325767418519622
# Raw : [1.2187288166957797, 1.2415342570257937, 1.2374671518343132]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2992265339759328
# Raw : [1.2803575368934215, 1.313092085419012, 1.3042299796153649]
==================================================
3 secs
********************
i의 값은 5
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 10 out of 14 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 10 out of 14 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 10 out of 14 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2325767418519622
# Raw : [1.2187288166957797, 1.2415342570257937, 1.2374671518343132]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2992265339759328
# Raw : [1.2803575368934215, 1.313092085419012, 1.3042299796153649]
==================================================
3 secs
********************
i의 값은 6
building tree 1 of 14
building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
[Parallel(n_jobs=-1)]: Done 5 tasks | elapsed: 0.1s
[Parallel(n_jobs=-1)]: Done 10 out of 14 | elapsed: 0.3s remaining: 0.0s
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 5 tasks | elapsed: 0.0s
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 5 tasks | elapsed: 0.0s
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 5 tasks | elapsed: 0.1s
[Parallel(n_jobs=-1)]: Done 10 out of 14 | elapsed: 0.2s remaining: 0.0s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.3s finished
[Parallel(n_jobs=4)]: Done 5 tasks | elapsed: 0.0s
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 5 tasks | elapsed: 0.0s
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 5 tasks | elapsed: 0.1s
[Parallel(n_jobs=-1)]: Done 10 out of 14 | elapsed: 0.3s remaining: 0.0s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 5 tasks | elapsed: 0.0s
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 5 tasks | elapsed: 0.0s
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2325767418519622
# Raw : [1.2187288166957797, 1.2415342570257937, 1.2374671518343132]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2992265339759328
# Raw : [1.2803575368934215, 1.313092085419012, 1.3042299796153649]
==================================================
3 secs
********************
i의 값은 7
building tree 1 of 14
building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 10 out of 14 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 10 out of 14 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
building tree 1 of 14building tree 2 of 14
building tree 3 of 14
building tree 4 of 14
building tree 5 of 14
building tree 6 of 14
building tree 7 of 14
building tree 8 of 14
building tree 9 of 14
building tree 10 of 14
building tree 11 of 14
building tree 12 of 14
building tree 13 of 14
building tree 14 of 14
[Parallel(n_jobs=-1)]: Done 10 out of 14 | elapsed: 0.3s remaining: 0.0s
[Parallel(n_jobs=-1)]: Done 14 out of 14 | elapsed: 0.4s finished
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
[Parallel(n_jobs=4)]: Done 10 out of 14 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=4)]: Done 14 out of 14 | elapsed: 0.0s finished
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.2325767418519622
# Raw : [1.2187288166957797, 1.2415342570257937, 1.2374671518343132]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.2992265339759328
# Raw : [1.2803575368934215, 1.313092085419012, 1.3042299796153649]
==================================================
3 secs
********************
In [ ]:
In [83]:
st = time.time()
et_model = ExtraTreesClassifier(max_depth=7, n_jobs=-1, random_state=777)
fit_and_eval(trn, target, et_model)
==================================================
TRAIN EVAL
--------------------------------------------------
# log loss
# Mean : 1.350351651905559
# Raw : [1.344456508193496, 1.382822898884797, 1.3237755486383842]
==================================================
VALID EVAL
--------------------------------------------------
# log loss
# Mean : 1.3758350517852571
# Raw : [1.3671488987996656, 1.4126798157501401, 1.3476764408059652]
==================================================
3 secs
In [ ]:
In [14]:
# 최종 모델 정의하기
model = RandomForestClassifier(max_depth=20, n_jobs=-1, random_state=777)
In [75]:
# 최종 모델 정의하기
model = RandomForestClassifier(max_depth=9, n_jobs=-1, random_state=777)
In [67]:
model = ExtraTreesClassifier(max_depth=7, n_jobs=-1, random_state=777)
In [76]:
from datetime import datetime
import os
print('='*50)
print('# Test shape : {}'.format(tst.shape))
model.fit(trn,target)
preds = model.predict_proba(tst)
preds = np.fliplr(np.argsort(preds, axis=1))
==================================================
# Test shape : (929615, 235)
In [77]:
cols = ['ind_ahor_fin_ult1', 'ind_aval_fin_ult1', 'ind_cco_fin_ult1',
'ind_cder_fin_ult1', 'ind_cno_fin_ult1', 'ind_ctju_fin_ult1',
'ind_ctma_fin_ult1', 'ind_ctop_fin_ult1', 'ind_ctpp_fin_ult1',
'ind_deco_fin_ult1', 'ind_deme_fin_ult1', 'ind_dela_fin_ult1',
'ind_ecue_fin_ult1', 'ind_fond_fin_ult1', 'ind_hip_fin_ult1',
'ind_plan_fin_ult1', 'ind_pres_fin_ult1', 'ind_reca_fin_ult1',
'ind_tjcr_fin_ult1', 'ind_valo_fin_ult1', 'ind_viv_fin_ult1',
'ind_nomina_ult1', 'ind_nom_pens_ult1', 'ind_recibo_ult1']
target_cols = [cols[i] for i, col in enumerate(cols) if i in rem_targets]
In [78]:
final_preds = []
for pred in preds:
top_products = []
for i, product in enumerate(pred):
top_products.append(target_cols[product])
if i == 6:
break
final_preds.append(' '.join(top_products))
out_df = pd.DataFrame({'ncodpers':test_id, 'added_products':final_preds})
file_name = datetime.now().strftime("result_%Y%m%d%H%M%S") + '.csv'
out_df.to_csv(os.path.join('../output',file_name), index=False)
In [ ]:
In [ ]:
In [ ]:
원천 데이터
전처리
피쳐 엔지니어링 이전 데이터 dimension
피쳐 엔지니어링
피쳐 엔지니어링 이후 데이터 dimension
모델 튜닝
검증 결과
실제 결과
예시
In [ ]:
In [ ]:
In [ ]:
In [33]:
print(trn.columns)
Index(['age', 'antiguedad', 'canal_entrada', 'cod_prov', 'conyuemp',
'fecha_alta', 'ind_actividad_cliente', 'ind_empleado', 'ind_nuevo',
'indext',
...
'indrel_lag_fiv', 'indrel_1mes_lag_fiv', 'indresi_lag_fiv',
'nomprov_lag_fiv', 'pais_residencia_lag_fiv', 'renta_lag_fiv',
'segmento_lag_fiv', 'sexo_lag_fiv', 'tiprel_1mes_lag_fiv',
'ult_fec_cli_1t_lag_fiv'],
dtype='object', length=246)
In [34]:
trn.head()
Out[34]:
age
antiguedad
canal_entrada
cod_prov
conyuemp
fecha_alta
ind_actividad_cliente
ind_empleado
ind_nuevo
indext
...
indrel_lag_fiv
indrel_1mes_lag_fiv
indresi_lag_fiv
nomprov_lag_fiv
pais_residencia_lag_fiv
renta_lag_fiv
segmento_lag_fiv
sexo_lag_fiv
tiprel_1mes_lag_fiv
ult_fec_cli_1t_lag_fiv
0
28
34
150
20
2
1012
1
3
0
0
...
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1
28
34
150
20
2
1012
1
3
0
0
...
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2
37
34
122
20
2
1012
1
3
0
0
...
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-153.0
3
37
34
122
20
2
1012
1
3
0
0
...
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-153.0
4
40
34
122
20
2
1012
1
3
0
0
...
0.0
0.0
1.0
30.0
36.0
93847.0
1.0
0.0
0.0
-153.0
5 rows × 246 columns
In [38]:
trn.ix[:5,23:]
Out[38]:
canal_entrada_lag_one
cod_prov_lag_one
conyuemp_lag_one
fecha_alta_lag_one
ind_actividad_cliente_lag_one
ind_ahor_fin_ult1_lag_one
ind_aval_fin_ult1_lag_one
ind_cco_fin_ult1_lag_one
ind_cder_fin_ult1_lag_one
ind_cno_fin_ult1_lag_one
...
indrel_lag_fiv
indrel_1mes_lag_fiv
indresi_lag_fiv
nomprov_lag_fiv
pais_residencia_lag_fiv
renta_lag_fiv
segmento_lag_fiv
sexo_lag_fiv
tiprel_1mes_lag_fiv
ult_fec_cli_1t_lag_fiv
0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
...
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
...
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2
122.0
20.0
2.0
981.0
1.0
0.0
0.0
0.0
0.0
1.0
...
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-153.0
3
122.0
20.0
2.0
981.0
1.0
0.0
0.0
0.0
0.0
1.0
...
0.0
0.0
1.0
30.0
36.0
107894.0
1.0
1.0
0.0
-153.0
4
122.0
20.0
2.0
981.0
1.0
0.0
0.0
1.0
0.0
0.0
...
0.0
0.0
1.0
30.0
36.0
93847.0
1.0
0.0
0.0
-153.0
5
122.0
21.0
2.0
981.0
0.0
0.0
0.0
1.0
0.0
0.0
...
0.0
0.0
1.0
31.0
36.0
54195.0
1.0
1.0
1.0
-153.0
6 rows × 223 columns
In [ ]:
In [ ]:
Content source: zzsza/Kaggle_Santander-Product-Recommendation
Similar notebooks: